PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of wavelet exponential window denoising and dynamic uncertainty in acoustic emission

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gas-liquid two-phase acoustic emission (AE) signal contains rich flow information, but it is also accompanied by a large number of interference signals. To accurately extract the characteristics of gas-liquid two-phase flow, the removal of interference signals is very important. In this paper, AE technology is used to detect the signal of gas-liquid two-phase flow in a vertical pipeline. The support degree of the sensor is checked by the trust function to confirm the consistency of the sensor and eliminate wrong data. The decomposition level of the wavelet base and wavelet transform is determined by four parameters such as the signal-to-noise ratio. By comparing the wavelet exponential window smoothing method and the wavelet soft threshold method, the wavelet exponential window smoothing method which is more suitable for the denoising effect is selected, and the real-time denoising effect is evaluated by using the measurement dynamic uncertainty theory. The results show that the wavelet exponential window denoising method improves the signal-to-noise ratio, reduces the energy leakage during denoising, and significantly improves the pseudo-Gibbs phenomenon, while dynamic uncertainty can effectively evaluate the denoising effect of AE signals.
Rocznik
Strony
637--655
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Hebei University, School of Quality and Technical Supervision, Hebei, Baoding, 071000, China
  • Institute of Metrology of Hebei Province, 050200, China
autor
  • Hebei University, School of Quality and Technical Supervision, Hebei, Baoding, 071000, China
  • Hubei Huangshi Institute of Measurement and Testing, Huangshi, Hubei, Hubei, 435000, China
autor
  • Hubei Huangshi Institute of Measurement and Testing, Huangshi, Hubei, Hubei, 435000, China
autor
  • School of Electronic Information Engineering, Langfang Normal University, Langfang, 065000, China
Bibliografia
  • [1] Feng, Q., Yongzhong, B., Dingrong, Q., & Wenwu, C. (2022). Acoustic mechanism and characteristics of corrosion bubble rupture. Insight - Non-Destructive Testing and Condition Monitoring, 64(2), 99-107. https://doi.org/10.1784/insi.2022.64.2.99
  • [2] Wang, G., Song, L. B., Liu, X. Q., Bao, C. Y., Lin, M. Q., & Liu, G. J. (2022). Shear Fracture Mechanical Properties and Acoustic Emission Characteristics of Discontinuous Jointed Granite. Rock and Soil Mechanics, 43(6), 1533-1545. https://doi.org/10.16285/j.rsm.2021.2120
  • [3] Han, C., Yang, G., Wang, J., & Guo, X. (2020). The research on propagation characteristics of acoustic emission signals in stiffened plates based on the multipath propagation model. Ultrasonics, 108, 106177. https://doi.org/10.1016/j.ultras.2020.106177
  • [4] Witos, F., Opilski, Z., Szerszeń, G., & Setkiewicz, M. (2019). The 8AE-PD computer measurement system for registration and analysis of acoustic emission signals generated by partial discharges in oil power transformers. Metrology and Measurement Systems, 403-418. https://doi.org/10.24425/mms.2019.128355
  • [5] Mao, F., Fang, S., Li, M., Huang, C., Deng, T., Zhao, Y., & Qin, G. (2022). Study on Attenuation Characteristics of Acoustic Emission Signals with Different Frequencies in Wood. Sensors, 22(16), 5991. https://doi.org/10.3390/s22165991
  • [6] Mukherjee, A., & Banerjee, A. (2020). Analysis of Acoustic Emission Signal for Crack Detection and Distance Measurement on Steel Structure. Acoustics Australia, 49(1), 133-149. https://doi.org/10.1007/s40857-020-00208-z
  • [7] Fernández, A., Rescalvo, F. J., Cruz, A., Abarkane, C., & Santiago, J. M. (2019). Acoustic emission analysis of raw bamboo subjected to tensile tests. Mechanics of Advanced Materials and Structures, 28(13), 1389-1397. https://doi.org/10.1080/15376494.2019.1675105
  • [8] Świt, G., Dzioba, I., Adamczak-Bugno, A., & Krampikowska, A. (2022). Identification of the Fracture Process in Gas Pipeline Steel Based on the Analysis of AE Signals. Materials, 15(7), 2659. https://doi.org/10.3390/ma15072659
  • [9] Topolář, L., Kocáb, D., Pazdera, L., & Vymazal, T. (2021). Analysis of Acoustic Emission Signals Recorded during Freeze-Thaw Cycling of Concrete. Materials, 14(5), 1230. https://doi.org/10.3390/ma14051230
  • [10] Su, Y., Dong, L., & Pei, Z. (2022). Non-Destructive Testing for Cavity Damages in Automated Machines Based on Acoustic Emission Tomography. Sensors, 22(6), 2201. https://doi.org/10.3390/s22062201
  • [11] Machikhin, A., Poroykov, A., Bardakov, V., Marchenkov, A., Zhgut, D., Sharikova, M., Barat, V., Meleshko, N., & Kren, A. (2022). Combined Acoustic Emission and Digital Image Correlation for Early Detection and Measurement of Fatigue Cracks in Rails and Train Parts under Dynamic Loading. Sensors, 22(23), 9256. https://doi.org/10.3390/s22239256
  • [12] Gupta, M., Khan, M. A., Butola, R., & Singari, R. M. (2021). Advances in Applications of Non-Destructive Testing (NDT): A review. Advances in Materials and Processing Technologies, 8(2), 2286-2307. https://doi.org/10.1080/2374068x.2021.1909332
  • [13] Wang, K., Liu, G., Li, Y., Qin, M., & Wang, G. (2019). Experimental evaluation of sand particle identification in oil-water-gas multiphase flows based on vibration signal analysis. Chemical Engineering Research and Design, 151, 79-90. https://doi.org/10.1016/j.cherd.2019.07.029
  • [14] De Almeida, V., Serris, E., Cameirão, A., Herri, J.-M., Abadie, E., & Glénat, P. (2022). Monitoring gas hydrates under multiphase flow in a high pressure flow loop by means of an acoustic emission technology. Journal of Natural Gas Science and Engineering, 97, 104338. https://doi.org/10.1016/j.jngse.2021.104338
  • [15] Siman-Tov, S., & Brodsky, E. E. (2021). Distinguishing between rheophysical regimes of fluid-saturated granular flows using dilatancy and acoustic emission measurements. Granular Matter, 23(2). https://doi.org/10.1007/s10035-021-01103-8
  • [16] Lin, W., Wang, K., Yang, Y., Huang, Z., Sun, J., Wang, J., & Yang, Y. (2020). Characterization of flow pattern of cohesive particles in gas-solid fluidized bed via axial distribution of particle motions. International Journal of Multiphase Flow, 130, 103355. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103355
  • [17] Al-Lababidi, S., Mba, D., & Addali, A. (2012). Upstream multiphase flow assurance monitoring using acoustic emission. Acoustic Emission, 27, 217-250. https://doi.org/10.5772/31332
  • [18] W. Qin. (2022). Signal Analysis of Characteristics Using Passive Acoustic Emission Technique in Gas-Solid Pipeline Flows. Discrete Dynamics in Nature and Society, 2022, 7848008. https://doi.org/10.1155/2022/7848008
  • [19] Wang, K., Liu, G., Li, Y., Qin, M., Wang, J., Wang, G., & Mei, D. (2019). Vibration and acoustic signal characteristics of solid particles carried in sand-water two-phase flows. Powder Technology, 345, 159-168. https://doi.org/10.1016/j.powtec.2018.12.092
  • [20] Kang, P., Lu, Y., Yang, L., Liu, L., Hu, X. (Eric), Luo, X., Chen, H., Zhou, Y., & Zhang, R. (2020). Nonlinear characteristics analyses of particle motion for predicting flow regimes. Particuology, 53, 134-141. https://doi.org/10.1016/j.partic.2020.03.008
  • [21] Zhou, Y., Xu, Z., Xiao, G., Hu, X., Chen, H., Zhang, R., Luo, X., Wang, J., & Yang, Y. (2020). Monitoring the hydrodynamics and critical variation of separation efficiency of cyclone separator via acoustic emission technique with multiple analysis methods. Powder Technology, 373, 174-183. https://doi.org/10.1016/j.powtec.2020.06.053
  • [22] Li, C., Zhu, Y., Wang, J., Liu, W., Fang, L., & Zhao, N. (2023). Mass flow rate measurement of gas-liquid two-phase flow using acoustic-optical-Venturi multisensors. Flow Measurement and Instrumentation, 90, 102314. https://doi.org/10.1016/j.flowmeasinst.2023.102314
  • [23] Diao, X., Jiang, J., Shen, G., Chi, Z., Wang, Z., Ni, L., Mebarki, A., Bian, H., & Hao, Y. (2020). An improved variational mode decomposition method based on particle swarm optimization for leak detection of liquid pipelines. Mechanical Systems and Signal Processing, 143, 106787. https://doi.org/10.1016/j.ymssp.2020.106787
  • [24] Liu, T., Jin, Y., Wang, S., Zheng, Q., & Yang, G. (2023). Denoising method of weak fault acoustic emission signal under strong background noise of engine based on autoencoder and wavelet packet decomposition. Structural Health Monitoring, 22(5), 3206-3224. https://doi.org/10.1177/14759217221143547
  • [25] Yu, A., Liu, X., Fu, F., Chen, X., & Zhang, Y. (2023). Acoustic Emission Signal Denoising of Bridge Structures Using SOM Neural Network Machine Learning. Journal of Performance of Constructed Facilities, 37(1). https://doi.org/10.1061/(asce)cf.1943-5509.0001778
  • [26] Kim, J., Harne, R. L., & Wang, K. W. (2022). Online Signal Denoising Using Adaptive Stochastic Resonance in Parallel Array and Its Application to Acoustic Emission Signals. Journal of Vibration and Acoustics, 144(3). https://doi.org/10.1115/1.4052639
  • [27] Huang, Y., Wang, K. H., & Zhou, X. X. (2018). Translation Invariant Wavelet De-noising of CO2 Gas Shielded Arc Welding Electrical Signal. Journal of Mechanical Engineering, 54(8), 95-100. https://doi.org/10.3901/JME.2018.08.095
  • [28] de Oliveira, E. M., & Cyrino Oliveira, F. L. (2018). Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy, 144, 776-788. https://doi.org/10.1016/j.energy.2017.12.049
  • [29] Kim, J., & Jung, H. (2017). Time series forecasting using functional partial least square regression with stochastic volatility, GARCH, and exponential smoothing. Journal of Forecasting, 37(3), 269-280. https://doi.org/10.1002/for.2498
  • [30] Jia, R.-S., Liu, C., Sun, H.-M., & Yan, X.-H. (2015). A situation assessment method for rock burst based on multi-agent information fusion. Computers & Electrical Engineering, 45, 22-32. https://doi.org/10.1016/j.compeleceng.2015.04.015
  • [31] Akhoundi, M. A. A., & Valavi, E. (2019). Multi-Sensor Fuzzy Data Fusion Using Sensors with Different Characteristics. The CSI Journal on Computer Science and Engineering. 16(2), 44-53. https://doi.org/10.48550/ARXIV.1010.6096
  • [32] Fu, H. Q., Zhu, J. J., Wang, C. C., Wang, H. Q., & Zhao, R. (2018). A Wavelet Decomposition and Polynomial Fitting-Based Method for the Estimation of Time-Varying Residual Motion Error in Airborne Interferometric SAR. IEEE Transactions on Geoscience and Remote Sensing, 56(1), 49-59. https://doi.org/10.1109/tgrs.2017.2727076
  • [33] Phillips, R. C., & Gorse, D. (2018). Cryptocurrency price drivers: Wavelet coherence analysis revisited. PLOS ONE, 13(4), e0195200. https://doi.org/10.1371/journal.pone.0195200
  • [34] Chen, S., Meng, H., Zhong, Q., & Li, X.-Y. (2018). Microseismic data SNR enhancement using local projection denoising method. Journal of Geophysics and Engineering, 15(6), 2566-2576. https://doi.org/10.1088/1742-2140/aadb73
  • [35] Zhu, J., Zhang, Z., & Kuang, C. (2015). A Reliable Evaluation Indicator of Wavelet Denoising. Journal of Wuhan University (Geomatics and Information Science), 40(5), 688-694. https://doi.org/10.13203/j.whugis20130417
  • [36] Jian, S., & Wen, W. (2017, February). Study on underwater image denoising algorithm based on wavelet transform. In Journal of Physics: Conference Series (Vol. 806, No. 1, p. 012006). IOP Publishing. https://doi.org/10.1088/1742-6596/806/1/012006.
  • [37] Li, L., & Si, Y. (2018). Enhancement of Medical Images Based on Guided Filter in Nonsubsampled Shearlet Transform Domain. Journal of Medical Imaging and Health Informatics, 8(6), 1207-1216. https://doi.org/10.1166/jmihi.2018.2469
  • [38] Li, Z. C., Deng Y., Zhang, G. Y., & Yang, X. H. (2011). Determination of best grading of wavelet transform in deformation measurement data filtering. Geomatics and Information Science of Wuhan University, 36(3), 285-288. https://doi.org/10.13203/j.whugis2011.03.006
  • [39] Qu, G. Q., Dang, Y. M., & Zhang, C. Y. (2007). Uncertainty of de-noising of deformation monitoring signals. Science of Surveying and Mapping, 32, 21-22.
Uwagi
The study was supported by Post-Graduate Innovation Fund Project of the Hebei Province (CXZZBS 2023026), the Science and Technology Project of the Hebei Education Department (QN2023077), the National Natural Science Foundation of China (62173122), the Key Project of Natural Science Foundation of Hebei Province (F2021201031), Hebei Provincial Postgraduate Demonstration Course Project (KCJSX2021009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b9658d9-2cd3-46b1-9529-5bd5fc0667b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.