PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Multichannel Analysis of Surface Waves to S-Phase Wave Anisotropy Estimation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Multichannel Analysis of Surface Waves (MASW) is an increasingly used technique for recognition of a shallow geological structure and estimation of geotechnical parameters, e.g., S-wave velocity, layer density, layer thickness, shear modulus, estimated P-wave velocity, and estimated Poisson ratio. MASW surveys were carried out in two limestone quarries in the southern part of Poland. The experimental areas are characterised by a simple geological structure: consolidated Triassic limestone. Measurement profiles were arranged as a shapely six-pointed star. For each survey line, 12 geophones with 2-meter (Deposit 1) and 3-meter (Deposit 2) spacing were applied. The research allowed to compare P- and S-wave velocity changes with the main crack systems in the studied rock masses.
Czasopismo
Rocznik
Strony
1593--1604
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland
  • University of Silesia, Faculty of Earth Sciences, Sosnowiec, Poland
Bibliografia
  • Anderson, D.L., B. Minster, and D. Cole (1974), The effect of oriented cracks on seismic velocities, J. Geophys. Res. 79, 26, 4011-4015, DOI: 10.1029/ JB079i026p04011.
  • Barton, N. (2007), Rock Quality, Seismic Velocity, Attenuation and Anisotropy, Taylor & Francis Group. London.
  • Bukowska, M., and U. Sanetra (2008), The tests of the conventional triaxial granite and dolomite compression in the aspect of their mechanical properties, Miner. Resour. Manage. 24, 2, 345-358.
  • Bukowska, M., U. Sanetra, and M. Wadas (2007), The post-peak failure properties and deformational structures of rocks under conventional triaxial compression conditions, Archiv. Min. Sci. 52, 3, 297-310.
  • Çaylak, Ç., and İ. Kaftan (2014), Determination of near-surface structures from multi-channel surface wave data using multi-layer perceptron neural network (MLPNN) algorithm, Acta Geophys. 62, 6, 1310-1327, DOI: 10.2478/ s11600-014-0207-8.
  • Czarakcziewa, A. (1971), Geological documentation of Triassic limestone deposit “STRZELCE OPOLSKIE” in cat. B, C1, C2, Przedsiębiorstwo Geologiczne, Kraków (in Polish).
  • Dal Moro, G., M. Pipan, and P. Gabrielli (2007), Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation, J. Appl. Geophys. 61, 1, 39-55, DOI: 10.1016/j.jappgeo.2006. 04.002.
  • Dobróka, M., and J. Somogyi Molnár (2012), New petrophysical model describing the pressure dependence of seismic velocity, Acta Geophys. 60, 2, 371-383, DOI: 10.2478/s11600-011-0079-0.
  • Foti, S., S. Parolai, D. Albarello, and M. Picozzi (2011), Application of surfacewave methods for seismic site characterization, Surv. Geophys. 32, 6, 777- 825, DOI: 10.1007/s10712-011-9134-2.
  • Jarzyna, J., M. Bała, and A. Cichy (2010), Elastic parameters of rocks from well logging in near surface sediments, Acta Geophys. 58, 1, 34-48, DOI: 10.2478/s11600-009-0036-3.
  • Lai, C.G., and G.J. Rix (1998), Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization, Georgia Institute of Technology, School of Civil and Environmental Engineering, Report No. GIT-CEE/GEO-98-2, 258 pp.
  • Louie, J.N. (2001), Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bull. Seismol. Soc. Am. 91, 2, 347-364, DOI: 10.1785/0120000098.
  • Nazarian, S., K.H. Stokoe II, and W.R. Hudson (1983), Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems, Transport. Res. Record 930, 38-45.
  • Park, C.B., R.D. Miller, and J. Xia (1999), Multichannel analysis of surface waves, Geophysics 64, 3, 800-808, DOI: 10.1190/1.1444590.
  • Polkowski, M., and M. Grad (2015), Seismic wave velocities in deep sediments in Poland: borehole and refraction data compilation, Acta Geophys. 63, 3, 698-714, DOI: 10.1515/acgeo-2015-0019.
  • Ramillien, G. (2001), Genetic algorithms for geophysical parameter inversion from altimeter data, Geophys. J. Int. 147, 2, 393-402, DOI: 10.1046/j.0956- 540x.2001.01543.x.
  • Stan-Kłeczek, I. (2008), The role of seismic methods in investigation of rock mass, Acta Geophys. 56, 4, 1065-1073, DOI: 10.2478/s11600-008-0052-8.
  • Stan-Kłeczek, I., and A.F. Idziak (2008), Anisotropy of elastic properties of rock mass induced by cracks, Acta Geodyn.Geomater. 5, 2, 150, 153-159.
  • Stan-Kłeczek, I., K. Sutkowska, D. Stan, and M. Zolich (2012), The study of the relationship between cracks and seismic parameters of rock, Acta Geodyn. Geomater. 9, 2, 166, 137-142.
  • Vilhelm, J., V. Rudajev, and R. Živor (2011), Assessment of fracture properties from P-wave velocity distribution. In: A.F. Idziak and R. Dubiel (eds.), Geophysics in Mining and Enviromental Protection, Geoplanet: Earth and Planetary Sciences, Vol. 2, Springer, Berlin Heidelberg, 109-116, DOI: 10.1007/978-3-642-19097-1_11.
  • Xia, J., R.D. Miller, and C.B. Park (1999), Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics 64, 3, 691-700, DOI: 10.1190/1.1444578.
  • Živor, R., J. Vilhelm, V. Rudajev, and T. Lokajícek (2011), Measurement of P- and S-wave velocities in a rock massif and its use in estimation elastic moduli, Acta Geodyn. Geomat. 8, 2, 157-167.
Uwagi
Errata do artukułu: In the original version of this article, the authors did not add on page 1602 the acknowledgement section between Conclusion and References. The new section should be as follows: Acknowledgements The project was partially funded by the National Science Centre granted under Decision No. UMO-2012/05/N/ST10/03943.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b8e4bb4-833e-46f6-8869-072190be829d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.