PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Texture Evolution During Cold-Rolling in the Fe-23Mn-3Si-3Al Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozwój mikrostruktury i tekstury w walcowanym na zimno stopie Fe-23Mn-3Si-3Al
Języki publikacji
EN
Abstrakty
EN
Fe–23wt.%Mn–3wt.%Si–3wt.%Al alloy was cast, homogenized at 1150ºC, hot-rolled at temperatures between 1200ºC and 900ºC and next cold-rolled from 5% up to 40% reductions in thickness. Microstructure and texture of this alloy, which has a low stacking fault energy, were defined after cold-rolling. Investigation of transmission electron microscopy and X-ray diffraction showed that mechanical twinning and martensitic transformations (γfcc→εhcp and γfcc→εhcp→α′bcc) took place during cold-rolling. The crystallographic Shoji-Nishiyama (S-N) {00.2}ε║{111}γ, <11.0>ε ║ <110>γ and Kurdjumov-Sachs (K-S) {111}γ║{101}α’, <101>γ║<111>α’ relations between martensite (ε, α’) and austenite (γ), were found in the coldrolled material.
PL
W artykule zamieszczono wyniki badań mikrostruktury i tekstury otrzymane dla stopu Fe–23%Mn–3%Si–3%Al (% masowe). Po odlaniu wlewek homogenizowano przy temperaturze 1150ºC, walcowano na gorąco w zakresie temperatur 1200ºC-900ºC i następnie walcowano na zimno do odkształceń od 5% do 40%. Wyniki badań uzyskane przy użyciu transmisyjnej mikroskopii elektronowej i metod dyfrakcyjnych wskazują, że podczas odkształcenia plastycznego na zimno w stopie zachodzi mechaniczne bliźniakowanie i przemiana martenzytyczna. Występują zależności krystalograficzne pomiędzy austenitem (faza γ) i martenzytem (faza ε i faza α’), które opisują zależności: Shoji-Nishiyama {00.2}ε || {111}γ, <11.0>ε || <110>γ i Kurdjumowa-Sachsa {111}γ || {110}α, <110>γ || <111>α.
Słowa kluczowe
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Pedagogical University of Cracow, Faculty of Mathematics, Physical and Technical Science, Poland
Bibliografia
  • [1] E. Nagy, V. Martinger, F. Tranata, J. Sólyom, Deformation Induced Martenstic Transformation in Stainless Steel, Mater. Sci. Eng. A378, 308-331 (2004).
  • [2] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, S. Koike, M. Ichihara, Plastic Deformation and Martensitic Transformation in an Iron-Base Alloy, Scripta Metall. 10, 4, 353-358 (1976).
  • [3] S. M. Tavares, D. Gunderov, V. Stolyarov, J. M. Neto, Phase Induced by Severe Plastic Deformation in the AISI 304L Stainless Steel, Mater. Sci. Eng. A358, 32-36 (2003).
  • [4] H. Oettel, U. Martin, The nature of the TRIP-effect in metastable austenitic steels Int. J. Res. 97, 12, 1642-1647 (2006).
  • [5] W. Ratuszek, J. Kowalska, A. Bunsch, M. Rumiński, A. Zielińska–Lipiec, Development of deformation texture of austenitic steel wires, Arch. Metall. Mater. 53, 1, 167-174 (2008).
  • [6] A. Bunsch, J. Kowalska, K. Chruściel, Texture and Microstructure of Annealed AISI302 Steels Wires, Arch. Metall. Mater. 53, 1, 125-130 (2008).
  • [7] Y. Lü, B. Hutchinson, D. A. Molodov, G. Gottstein, Effect of Deformation and Annealing on the Formation of ε-martensite in an Fe-M-C alloy, Acta Mater. 58, 3079-3090 (2010).
  • [8] H. Ding, H. Ding, D. Song, Z. Tang, P. Yang, Strain Hardening Behavior of TRIP/TWIP Steel with 18.8% Mn, Mater. Sci. Eng. A528, 868-873 (2011).
  • [9] J. A. Jimenez, G. Frommeyer, Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel, Mater. Charact. 62, 221-226 (2010).
  • [10] O. Grässel, L. Krüger, G. Frommeyer, L. W. Meyer, High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development - Properties – Application, International Journal of Plasticity, 16, 1391-1409 (2000).
  • [11] A. S. Hamada, L. P. Karjalainen, M. C. Somani, The Influence of Aluminium on Hot Deformation Behavior and Tensile Properties of High-Mn TWIP Steels, Materials Science and Engineering A467, 114-124 (2007).
  • [12] G. Frommeyer, U. Brüx, P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ International, 43, 3, 438-446 (2003).
  • [13] J. Kowalska, W. Ratuszek. M. Witkowska, A. Zielińska–Lipiec, Development of Microstructure and Texture in Fe-26Mn-3Si-3Al Alloy During Cold-Rolling and Annealing, J. Alloys Comp. vol. 615 Suppl. 1, S583–S586 (2014).
  • [14] J. -B. Seol, J. E. Jung, Y. W. Jang, C. G. Park, Influence of Carbon Content on the Microstructure, Martensitic Transformation and Mechanical Properties in Austenite/ε-Martensite Dual-Phase Fe-Mn-C Steels, Acta Mater. 61 558-578 (2013).
  • [15] H. Idrissi, K. Renard, L. Rueland, D. Schyvers, P.J. Jacques, On the Mechanism of Twin Formation in Fe-Mn-C TWIP Steels, Acta Mater. 58 2464-2476 (2010).
  • [16] C. Hyoung Cheol., S. Hong Chul, C. Young Won, The Formation Kinetics of Deformation Twin and Deformation Induced ε-Martensite in an Austenitic Fe-C-Mn Steel, Scripta Mater. 40, 1171-1177 (1999)
  • [17] X. Liang, X. Wang, H. S. Zurob, Microstructural Characterizationof Transformable Fe-Mn Alloys at Diffrent Lenght Scales, Mater. Charact. 60, 1224-1231 (2009).
  • [18] E. P. Kwon, S. Fujieda, K. Shinoda, S. Suzuki, Texture Evaluation and fcc/hcp Transformation in Fe-Mn-Si-Cr Alloys by Tensile Deformation, Mater. Sci. and Eng. A527, 6524-6532 (2010).
  • [19] A. F. Padilha, R. L. Plaut, P.R. RIos, Annealing of Cold-Worked Austenitic Stainless Steel, ISIJ International 43, 2, 135-143 (2003).
  • [20] L. Bracke, G. Mertens, J. Penning, B. DeCooman, M. Liebeherr, N. Akdut, Influence of Phase Transformations on the Mechanical Properties of High-Strength Austenitic Fe-Mn-Cr Steel, Metall. Mater. Trans. A, 37A, 307-317 (2006).
  • [21] S. Gorczyca, Phase Transformation ε→γ ac a Process Previous to the Recrystallization of Cold Worked Chromium-Manganese Austenitic Steel, Scentific books of AGH University of Science and Technology, No.187, Kraków (1967).
  • [22] W. Zhang, Z. LIu, Z. Zhang, G. Wang, The Crystallographic Mechanism for Deformation Induced Martensitic Transformation Observed by High Resolution Transmission Electron Microscope, Materials Letters 91, 158-160 (2013).
  • [23] F. Lu, P. Yang, L. Meng, F. Cui, H. Ding, Influence of Thermal Martensite and Grain Orientation on Strain-Induced Martensites in High Manganese TRIP/TWIP Steels, J. Mater. Sci. Technol. 27 (3), 257-265 (2011).
Uwagi
EN
This work was sponsored by the Polish National Science Centre under Contract no 2011/01/D/ST8/03905. Appreciation is also expressed to Prof. A.S. Wronski (University of Bradford, UK) who edited the text
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b8e425e-d04d-420a-bfae-be559c5ba0cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.