PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the complete convergence of randomly weighted sums of random fields

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let (…) be a d-dimensional random field indexed by some subset V of lattice Nd, which are stochastically dominated by a random variable X. Let (…) be a 2d-dimensional random field independent of (…) and such that (…) for some constant M. In this paper, we give conditions under which the following series (…), is convergent for some real t, some fixed p > 0 and all ε > 0. Here |n| is used for (…). The randomly indexed sums of field (…) are considered too.
Wydawca
Rocznik
Strony
232--252
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
  • Uniwersytet Marii Curie-Skłodowskiej
Bibliografia
  • [1] P. Erdos, On a theorem of Hsu and Robbins, Acta. Math. Statist. 20 (1949), 286–291.
  • [2] L. E. Baum, M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), 108–123.
  • [3] A. Gut, Complete convergence. Asymptotics statistics. Proceedings of the Fifth Prague Symposium, Physica Verlag held September 4–9, 1993, (1994), 237–247.
  • [4] A. Gut, Complete convergence and convergence rates for randomly indexed partial sums with an application to some first passage times, Acta Math. Acad. Sci. Hungar. 42 (1983), 225–232; Correction, ibid. 45 (1985), 235–236.
  • [5] A. Gut, Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices, The Annals of Probab. 6(3) (1978), 469–482.
  • [6] J. Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186.
  • [7] P. L. Hsu, H. Robbins, Complete conevergence and the law of large numbers, Proc. Nat. Acad. Sci. USA 33 (1947), 25–31.
  • [8] T.-C. Hu, M. O. Cabrera, S. H. Sung, A. Volodin, Complete convergence for arrays of rowwise independent random variables, Commun. Korean Math. Soc. 18 (2003), 375–383.
  • [9] T.-C. Hu, F. Móricz, R. L. Taylor, Strong laws of large numbers for arrays of rowwise independent random variables, Acta Math. Hung. 54(1-2) (1989), 153–162.
  • [10] T.-C. Hu, D. Szynal, A. I. Volodin, A note on complete convergence for arrays, Statist. Probab. Lett. 38 (1998), 27–31.
  • [11] M. Ledoux, M. Talagrand, Probability in Banach Space, Springer, 1991.
  • [12] H. P. Rosenthal, On the subspaces of Lp(p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273–303.
  • [13] R. T. Smythe, Sums of independent random variables on partially ordered sets, Ann. Probability 2 (1974), 906–917.
  • [14] S. H. Sung, Complete convergence for weighted sum of random variables, Statist. Probab. Lett. 77 (2007), 303–311.
  • [15] S. H. Sung, A. I. Volodin, T.-C. Hu, More on complete convergence for arrays, Statist. Probab. Lett. 71 (2005), 303–311.
  • [16] L. V. Thahn, G. Yin, Almost sure and complete convergence of randomly weighted sums of independent random elements in Banach spaces, Taiwanese Journal of Mathematics 15 (2011), 1759–1781.
  • [17] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions with an account of the principal trnscendental functions, Cambridge University Press, Fourth Edition reprinted 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b8bf7f1-a28e-4fdf-b995-90da4dee592f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.