Identyfikatory
Warianty tytułu
Metallothioneins and polythiol motifs : interactions with metal ions
Języki publikacji
Abstrakty
Many of biochemical paths and processes require some metal ions to occur. There are also known the negative effects of the presence of metal ions in the organism. The both sides of metal ions interactions on the living organism require specific regulations and cannot be left without supervision and control of the organism itself. One of the strategy to keep the control on metal ions are cystein-rich proteins that play crucial role in detoxication of metal ions that are dangerous for human organism as well as they help to maintain homeostasis of essential metal ions. Matallothioneins are one of the well known, but still not fully understood, cysteine- rich proteins. They are small proteins but may contain up to 30% of cysteine residues in the sequence, and what makes them very special from chemical point of view - all of the thiols present there are reduced [1]. This property makes these proteins very tempting for coordination of various metal ions. The most efficient binding to metallothionein is observed for the ions belonging to a Group 11 and 12. Cu+, Zn2+ and Cd2+ represent these metal ions [2]. Besides of the lack of disulfide bridges, metallothioneins show also the absence or low amount of aromatic amino acid residues in the sequence [1]. Studies of the metallothioneins and their isoforms among different organisms show that the position of cysteine residues is very conservative [3]. Considering this aspect of metallothionein structure, some specific motifs of cysteine residues arrangement can be found in the sequence of these proteins. Most of the common polythiol motifs are CXC, CXXC, CXXXC, CC – where C is a cysteine residue and X is random α-amino acid residue (other than cysteine) [3–5]. The influence of the cysteine residues organization on the specificity of metal ions binding was intensively studied. The differences observed for specificity of metal ions binding by metallothioneins and selected polythiol motifs are reviewed in this paper – with strong emphasis on the effect of the cysteine residues topography.
Wydawca
Czasopismo
Rocznik
Tom
Strony
383--395
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- Państwowa Medyczna Wyższa Szkoła Zawodowa w Opolu, ul. Katowicka 68, 45-060 Opole
autor
- Państwowa Medyczna Wyższa Szkoła Zawodowa w Opolu, ul. Katowicka 68, 45-060 Opole
Bibliografia
- [1] Y. Kojima, Methods in Enzymology: Metallobiochemistry. Part B Metallothionein and Related Molecules, Academic Press, Inc., San Diego 1991.
- [2] D.E.K. Sutherland, M.J. Stillman, Metallomics, 2011, 3, 444.
- [3] M. Capdevila, S. Atrian, J. Biol. Inorg. Chem., 2011, 16, 977.
- [4] N. Romero-Isart, M. Vasak, J. Inorg. Biochem., 2002, 88, 388.
- [5] C. Baumann, A. Beil, S. Jurt, M. Niederwanger, O. Palacios, M. Capdevila, S. Atrian, R. Dallinger, O. Zerbe, Angewandte Chemie-International Edition, 2017, 56, 4617.
- [6] S.J. Lippard, J.M. Berg, Podstawy chemii bionieorganicznej, PWN, Warszawa 1998.
- [7] M. Margoshes, B.L. Vallee, J. Am. Chem. Soc., 1957, 79, 4813.
- [8] J.S. Scheller, G.W. Irvine and M.J. Stillman, Dalton Trans., 2018, 47, 3613.
- [9] T. Kalsotra, S. Khullar, R. Agnihotri, M. S. Reddy, Microbiology, 2018, doi: 10.1099/mic.0.000666.
- [10] P. Iturbe-Espinoza, S. Gil-Moreno, W. Lin, S. Calatayud, O. Palacios, M. Capdevila, S. Atrian, PLoS One. 2016, 11, e0148651.
- [11] J. Shi, W.P. Lindsay, J.W. Huckle, A.P. Morby, N.J. Robinson, FEBS Lett., 1992, 303, 159.
- [12] K. Takatera, N. Osaki, H. Yamaguchi, T. Watanabe, Anal. Sci., 1994, 10, 907.
- [13] A. Ziller, R.K. Yadav, M. Capdevila, M.S. Reddy, L. Vallon, R. Marmeisse, S. Atrian, O. Palacios, L. Fraissinet-Tachet, J. Inorg. Biochem., 2017, 167, 1.
- [14] M. Nordberg, G.F. Nordberg, Met. Ions Life Sci., 2009, 5, 1.
- [15] J. Calvo, H. Jung, G. Meloni, IUBMB Life, 2017, 69, 236.
- [16] M. Sato, I. Bremner, Free Radic. Biol. Med., 1993, 14, 325.
- [17] R. Kassim, C. Ramseyer, M. Enescu, J. Biol. Inorg. Chem., 2013,18, 333.
- [18] K. Subramanian Vignesh, G.S. Deepe, Jr., Int. J. Mol. Sci., 2017, 18, 2197.
- [19] A.T. Miles, G.M. Hawksworth, J.H. Beattie, V. Rodilla, Crit. Rev. Biochem. Mol. Biol., 2000, 35, 35.
- [20] M.P. Waalkes, J. Liu, Met. Ions Life Sci., 2009, 5, 399.
- [21] P.C. Caldeira, L.S. Silva, A.C. Batista, M.C. Aguiar, Arch. Oral. Biol., 2017, 77, 75.
- [22] A. Bizoń, K. Jędryczko, H. Milnerowicz, Postepy Hig. Med. Dosw., 2017, 71, 98.
- [23] M.O. Pedersen, A. Larsen, M. Stoltenberg, M. Penkowa, Prog. Histochem. Cytochem., 2009, 44, 29.
- [24] M.C. Carpenter, A. Shami Shah, S. DeSilva, A. Gleaton, A. Su, B. Goundie, M.L. Croteau, M.J. Stevenson, D.E. Wilcox, R.N. Austin, Metallomics, 2016, 8, 605.
- [25] H. Kozlowski, P. Kolkowska, J. Watly, K. Krzywoszynska, S. Potocki, Curr. Med. Chem., 2014, 21, 3721.
- [26] I. Sabolic, D. Breljak, M. Skarica, C. M. Herak-Kramberger, Biometals, 2010, 23, 897.
- [27] D. Juárez-Rebollar, C. Rios, C. Nava-Ruíz, M. Méndez-Armenta, Oxid. Med. Cell Longev., 2017, 2017, 1.
- [28] G. Meloni, T. Polanski, O. Braun, M. Vasák, Biochem., 2009, 48, 5700.
- [29] K. Kulon, D. Woźniak, K. Wegner, Z. Grzonka, H. Kozłowski, J. Inorg. Biochem., 2001, 101, 1699.
- [30] M. Rowińska-Żyrek, D. Witkowska, S. Bielińska, W. Kamysz, H. Kozłowski, Dalton Trans., 2011, 40, 5604.
- [31] K. Krzywoszyńska, M. Rowińska-Żyrek, D. Witkowska, S. Potocki, M. Łuczkowski, H. Kozłowski, Dalton Trans., 2011, 40, 10434.
- [32] K. Krzywoszyńska, H. Kozłowski, Dalton Trans., 2014, 43, 16207.
- [33] A. Cotton, G. Wilkinson, P.L. Gaus, Chemia nieorganiczna podstawy, PWN, Warszawa 1998.
- [34] R. Bofill, O. Palacios, M. Capdevila, N. Cols, R. González-Duarte, S. Atrian, P. González-Duarte, J. Inorg. Biochem., 1999, 73, 57.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b8b1fdf-d967-412d-a57d-4391d583ca86