PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First-principles calculations of electronic structure of rhodochrosite with impurity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electronic structure of rhodochrosite containing impurity defects is studied by using the first principles density functional theory. The energy band structure, density of states and electronic distribution are calculated for rhodochrosite crystal models with various impurities (e.g., Cu, Ca, Mg, Zn, Fe). This paper discusses the effects of such defects on the electronic structure of rhodochrosite. The calculation results show that the impurity defects have a great impact on the surface electrical properties of rhodochrosite. For example, Ca and Mg impurities reduce the semiconductor width of rhodochrosite. Both Ca and Mg atoms in orbital bonding act as electron donors in which Ca3p and Mg2p orbits provide electrons while O2p orbits receive electrons. Moreover, the more number of valence electrons of Mn is the weaker covalent interaction between Mn and O atoms will be. Meanwhile, decrease of the total energy of rhodochrosite, makes the structure more stable. When Fe, Zn and Cu impurities are contained, the forbidden gap becomes narrower, which improves the conductivity of rhodochrosite. In addition, impurity bands will be formed in the 3d orbits of rhodochrosite as shown in its density of states, and the number of electrons in 3d orbits will increase. This weakens the covalence of O atoms, decreases the population values of O-Mn, increases the bond length, and enhances the ionicity of O-Mn bonds. The impurity of all defects considered in this study have shown an improved conductivity of rhodochrosite, and increased hole concentration of Mn atoms, which will be of great benefit to the adsorption of anionic collectors and enhance the electrochemical properties for rhodochrosite flotation process.
Rocznik
Strony
195--203
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000
autor
  • School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000
autor
autor
  • School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000
autor
  • School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000
  • School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000
autor
  • School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
Bibliografia
  • HONG, S. 2011. Status of China Mn-ore in Resources Exploitation and the Sustainable Development. China’s manganese industry, 29(3), 13-16.
  • MAO, J., ZHANG, Y., 1994. Effects of multivalent metal Ions on floatability of rhodochrosite. China’s manganese industry, 12(6), 23-28.
  • LOU, N., WEI, D.Z., SHEN, Y.B., LIU, W., GAO, S.L., 2011 Effect of calcium ion on the separation of rhodochrosite and calcite. Journal of Materials Research and Technology, 7(1), 96-101.
  • SHOLL, D.L., STECKEL, J.A., 2009. Density Functional Theory a Practical Introduction. John Wiley & Sons, Inc., p. 243
  • CHEN, J.H., 2012. Principles of the flotation of sulphide minerals bearing lattice defects. Central South University Press, 321
  • CHEN, J.H., ZENG, X.Q., CHEN, Y., ZHANG, H.P., 2010. First-principle theory calculations of electronic structure of sphalerite with vacancy and impurity. The Chinese Journal of Nonferrous Metals, 20(4), 765-771.
  • MARTIN, R., BECKER, U., 2006. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation in to pyrite and marcasite. Chem. Geol., 225(3/4), 278-290.
  • HE, K.H., YU, F., JI, G.F., YAN, Q.L., ZHENG, S.K., 2006. Study of 0ptical Properties and Electronic Structure of V in ZnS by First Principles. Chinese Journal of High Pressure Physics, 20(1), 56-59.
  • XIAO, Q., QIU, G.Z., HU, Y.H., 2001. Computational simulation to mechanical activation of pyrite (I) - Relation of structural strain to chemistry reaction activity. The Chinese Journal of Nonferrous Metals, 11(5), 900-904.
  • LEI, Y. HU, X.Q., LIU, J.D., 2007. Influence of the structural electronic and optical properties on ZnS doped Co. Journal of Nanchang University, 31(6), 564−565.
  • WU, G.Y., ZHU, Y.G., YAN, Z.G., ZHENG, G.B., TAN, X., LIU, G.C., ZHANG, J., 2015. First Principles Study on flotatlon separation of magnesite and quartz. Mining & Metallurgy, 24(2), 11-14.
  • OERTZEN, G., JONES, R.T., GERSON, A.R., 2005. Electronic and optical properties of Fe, Zn and Pb sulfides. Physics and Chemistry of Minerals, 32, 255-268.
  • XU, C., LI, W., HE, X., SHANG, Y., 2016. First-Principles Calculations of Electronic Structure of LiFePO4 with Vacancy and Impurity. Chemistry Bulletin, 79(5), 412-417.
  • JOHNSON K.H., 1975. Effect of calcium ion on the separation of rhodochrosite and calcite. Quantum Chemistry. Annual Review of Physical Chemistry, 26(26), 39-57.
  • CAR, R. 1985. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett., 55(22), 24-71.
  • FISCHER, C.F., 1977. The Hartree-Fock method for atoms. Wiley, pp. 308.
  • PARR, R.G., 1990. Density Functional Theory. Chemical & Engineering News, 68(1), 45.
  • SEGALL, M.D., LINDAN, P.J.D., PROBERT, M.J., PICKARD, C.J., HASNIP, P.J., CLARK, S.J., PAYNE, M.C., 2002. First-principles simulation: Ideas illustrations and the CASTEP code. J. Phys. Cond. Matter, 14, 2717-2743.
  • PERDEW, J.P., BURKE, K., ERNEZERHOF, M. 1996. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868.
  • HOUK, K.N., 1975. Frontier molecular orbital theory of cycloaddition reactions. Accounts of Chemical Research, 8(11), 361-369.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b87027d-4297-475e-8fd9-e1b1dc3ae3d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.