Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Badanie wariantu obciążenia w ramach rekonfiguracji sieci dystrybucyjnej przy użyciu algorytmu EPSO
Języki publikacji
Abstrakty
Recently, the power loss issue has emerged as a critical challenge, causing significant disruptions in the nation's infrastructure, economy, and daily lives of its citizens. Despite being a rapidly developing country with a growing demand for electricity, frequent instances of power loss and interruption have resulted in severe consequences such as reduced productivity, financial losses, compromised public safety, and increased inconvenience to individuals and businesses. Due to that reason, this study proposes the Evolutionary Particle Swarm Optimization (EPSO) algorithm which is a hybrid optimization technique that combines the principles of Evolutionary Programming (EP) and Particle Swarm Optimization (PSO) to solve optimization problems by reducing the power losses under Distribution Network Reconfiguration (DNR). Moreover, the consideration of load variants involved in DNR while validating the voltage profile improvement with the best load weightage has been made concurrently. A detailed performance analysis is carried out on IEEE 33-bus test systems to demonstrate the effectiveness of the proposed method. Through simultaneous optimization, it was found that power loss reduction was achieved after conducting power DNR in a radial network connection. Furthermore, the test result also indicated that the EPSO algorithm produced better results in terms of convergence time compared to the conventional PSO algorithm.
Ostatnio problem utraty mocy stał się krytycznym wyzwaniem, powodującym znaczne zakłócenia w krajowej infrastrukturze, gospodarce i codziennym życiu obywateli. Pomimo tego, że jest to kraj szybko rozwijający się o rosnącym zapotrzebowaniu na energię elektryczną, częste przypadki utraty i przerw w dostawie energii powodują poważne konsekwencje, takie jak zmniejszenie produktywności, straty finansowe, zagrożenie bezpieczeństwa publicznego oraz zwiększone niedogodności dla osób fizycznych i przedsiębiorstw. Z tego powodu w niniejszym badaniu zaproponowano algorytm Evolutionary Particle Swarm Optimization (EPSO), który jest hybrydową techniką optymalizacji, która łączy w sobie zasady programowania ewolucyjnego (EP) i optymalizacji roju cząstek (PSO) w celu rozwiązania problemów optymalizacyjnych poprzez zmniejszenie strat mocy w warunkach Rekonfiguracja sieci dystrybucyjnej (DNR). Co więcej, równolegle uwzględniono warianty obciążenia związane z DNR podczas walidacji poprawy profilu napięcia przy najlepszym obciążeniu. Szczegółowa analiza wydajności jest przeprowadzana na systemach testowych IEEE 33-bus, aby wykazać skuteczność proponowanej metody. Dzięki jednoczesnej optymalizacji stwierdzono, że redukcję strat mocy uzyskano po przeprowadzeniu zasilania DNR w promieniowym połączeniu sieciowym. Ponadto wynik testu wskazał również, że algorytm EPSO dał lepsze wyniki pod względem czasu zbieżności w porównaniu z konwencjonalnym algorytmem PSO.
Wydawca
Czasopismo
Rocznik
Tom
Strony
124--128
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Universiti Teknikal Malaysia Melaka, Fakulti Teknologi Kejuruteraan Elektrik
autor
- Universiti Teknikal Malaysia Melaka, Fakulti Teknologi Kejuruteraan Elektrik
autor
- Universiti Teknikal Malaysia Melaka, Fakulti Teknologi Kejuruteraan Elektrik
autor
- Universiti Teknikal Malaysia Melaka, Fakulti Teknologi Kejuruteraan Elektrik
Bibliografia
- 1 Małgorzata ŁATKA, Marek NOWAK,”Comparative analysis of the indicators that concern power supply interruptions for electricity consumers for the selected distribution systems,” Przegląd Elektrotechniczny R.96, NR 1/2020, pp. 31–34
- 2 S.K.B.PradeepKumar Ch, Dr. G. Balamurugan, Dr. Y. Butchi raju,” Network Reconfiguration with Optimal allocation of Capacitors and DG units for Maximizing DISCOs Profit in a Restructured Power Market”, R. 98 NR 12/2022, pp. 187-193
- 3 Network Reconfiguration Based on NoisyNet Deep Q-Learning Network,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3089625
- 4 Rafei, A. Y. Abdelaziz, and F. Jurado, “Scenario-based network reconfiguration and renewable energy resources integration in large-scale distribution systems considering parameters uncertainty,” Mathematics, vol. 9, no. 1, 2021, doi: 10.3390/math9010026
- 5 Y. Gao, W. Wang, J. Shi, and N. Yu, “Batch-Constrained Reinforcement Learning for Dynamic Distribution Network Reconfiguration,” IEEE Trans Smart Grid, vol. 11, no. 6, 2020, doi: 10.1109/TSG.2020.3005270
- 6 S. Rasheed, M. Gupta, and A. R. Abhyankar, “Feeder Voltage Dependent Distribution Network Reconfiguration for Loss Reduction,” in 2018 20th National Power Systems Conference, NPSC 2018, 2018. doi: 10.1109/NPSC.2018.8771851
- 7 Y. Gao, J. Shi, W. Wang, and N. Yu, “Dynamic distribution network reconfiguration using reinforcement learning,” in 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2019, 2019. doi: 10.1109/SmartGridComm.2019.8909777
- 8 B. Canizes, B. Mota, P. Ribeiro, and Z. Vale, “DemandResponse Driven by Distribution Network Voltage Limit Violation: A Genetic Algorithm Approach for Load Shifting,” IEEE Access, vol. 10, 2022, doi: 10.1109/ACCESS.2022.3182580
- 9 A. Uniyal and S. Sarangi, “Optimal network reconfiguration and DG allocation using adaptive modified whale optimization algorithm considering probabilistic load flow,” Electric Power Systems Research, vol. 192, 2021, doi: 10.1016/j.epsr.2020.106909
- 10 M. Mahdavi, K. Schmitt, and F. Jurado, “Robust Distribution Network Reconfiguration in the Presence of Distributed Generation Under Uncertainty in Demand and Load Variations,” IEEE Transactions on Power Delivery, 2023, doi: 10.1109/TPWRD.2023.3277816
- 11 M. Gautam, N. Bhusal, M. Benidris, and S. J. Louis, “A Spanning Tree-based Genetic Algorithm for Distribution Network Reconfiguration,” in 2020 IEEE Industry Applications Society Annual Meeting, IAS 2020, 2020. doi: 10.1109/IAS44978.2020.9334819
- 12 M. Esmaeili, M. Sedighizadeh, and M. Esmaili, “Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty,” Energy, vol. 103, 2016, doi: 10.1016/j.energy.2016.02.152
- 13 M. Cikan and B. Kekezoglu, “Comparison of metaheuristic optimization techniques including Equilibrium optimizer algorithm in power distribution network reconfiguration,” Alexandria Engineering Journal, vol. 61, no. 2, 2022, doi: 10.1016/j.aej.2021.06.079.
- 14 H. Hamour, S. Kamel, H. Abdel-Mawgoud, A. Korashy, and F. Jurado, “Distribution network reconfiguration using grasshopper optimization algorithm for power loss minimization,” in 2018 International Conference on Smart Energy Systems and Technologies, SEST 2018 - Proceedings, 2018. doi: 10.1109/SEST.2018.8495659
- 15 S. A. Adegoke and Y. Sun, “Power system optimization approach to mitigate voltage instability issues: A review,” Cogent Engineering, vol. 10, no. 1. 2023. doi: 10.1080/23311916.2022.2153416
- 16 A. A. ElDesouky, E. M. Reyad, and G. A. Mahmoud, “Implementation of boolean PSO for service restoration using distribution network reconfiguration simultaneously with distributed energy resources and capacitor banks,” International Journal of Renewable Energy Research, vol. 10, no. 1, 2020, doi: 10.20508/ijrer.v10i1.10473.g7881
- 17 An improved optimization algorithm for network skeleton reconfiguration after power system blackout,” Tehnicki vjesnik - Technical Gazette, vol. 22, no. 6, 2015, doi: 10.17559/tv-20151026084850
- 18 H. L. Cortez, J. C. P. Broma, and G. V. Magwili, “Optimal Placement and Sizing of Hybrid Solar-Wind Distributed Generation in Distribution Network using Particle Swarm Optimization Algorithm,” in International Conference on Electrical, Computer, and Energy Technologies, ICECET 2022, 2022. doi: 10.1109/ICECET55527.2022.9873080
- 19 W. T. Huang et al., “A two-stage optimal network reconfiguration approach for minimizing energy loss of distribution networks using particle swarm optimization algorithm,” Energies (Basel), vol. 8, no. 12, 2015, doi: 10.3390/en81212402
- 20 T. J. Cheng, C. T. Hsu, R. Korimara, Y. Der Lee, and Y. R. Chang, “Particle swarm optimization application on a micro grid for energy savings,” Microsystem Technologies, vol. 24, no. 1, 2018, doi: 10.1007/s00542-016-3152-
- 21 T. D. Patel And A. G. Acharya, “Minimize Power Loss Using Particle Swarm Optimization Technique,” International Journal Of Electrical Engineering & Technology , vol. 10, no. 2, 2019, doi: 10.34218/ijeet.10.2.2019.007
- 22 H. Shan, Y. Sun, W. Zhang, A. Kudreyko, and L. Ren, “Reliability Analysis of Power Distribution Network Based on PSO-DBN,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3007776
- 23 Y. Merzoug, B. Abdelkrim, and B. Larbi, “Distribution network reconfiguration for loss reduction using PSO method,” International Journal of Electrical and Computer Engineering, vol. 10, no. 5, 2020, doi: 10.11591/IJECE.V10I5.PP5009-5015
- 24 N. F. Napis, M. F. Sulaima, R. M. A. R. A. Arif, A. F. A. Kadir, and M. F. Baharom, “A power distribution network restoration via feeder reconfiguration by using EPSO for losses reduction,” J Theor Appl Inf Technol, vol. 79, no. 2, 2015
- 25 M. F. Sulaima, M. N. M. Nasir, N. H. Shamsudin, M. Sulaiman, and W. M. Dahalan, “Implementation of modified EPSO technique in 69kV distribution network reconfiguration for losses reduction,” International Journal of Engineering and Technology, vol. 7, no. 2, 2015
- 26 W. M. Dahalan, A. G. Othman, M. R. Zoolfakar, P. Z. M. Khalid, and Z. I. Rizman, “Optimum dnr and dg sizing for power loss reduction using improved meta-heuristic methods,” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 20, 2016
- 27 J. J. Jamian, M. W. Mustafa, H. Mokhlis, and M. N. Abdullah, “Comparative study on Distributed Generator sizing using three types of Particle Swarm Optimization,” in Proceedings - 3rd International Conference on Intelligent Systems Modelling and Simulation, ISMS 2012, 2012. doi: 10.1109/ISMS.2012.71
- 28 M. Usman, A. Amin, M. M. Azam, and H. Mokhlis, “Optimal under voltage load shedding scheme for a distribution network using EPSO algorithm,” in Proceedings - 2018, IEEE 1st International Conference on Power, Energy and Smart Grid, ICPESG 2018, 2018. doi: 10.1109/ICPESG.2018.8384525
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b86360c-1519-4f66-87ce-182a8894c764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.