PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust RTSs-based esprit method for low frequency oscillations analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low frequency oscillations (LFOs) threaten the stability of power systems. The estimation of signal parameters via rotational invariant techniques can analyse LFOs with high accuracy only when the model order of the analysed signal is known. This paper proposes a novel model order estimation method for modal analysis of LFOs. The method first builds a singular energy spectrum to inspect whether the measurement data is being polluted by complex interferences (e.g., impulsive noises). Then, a tailored Rauch-Tung-Striebel smoother is utilized to alleviate the impact of complex interferences. Afterwards, the mean value of the singular energies is adopted to determine a rough estimation of the model order of dominant modes in LFOs. Finally, the reconstruction quality indicator of the reconstructed signal is introduced for detecting and correcting overestimation and fake modes. The proposed solution is experimentally evaluated via simulations and field measurement data obtained from the phasor measurement unit installed at a generating station in North America. Results show that the method is accurate, robust, and suitable for field applications.
Rocznik
Strony
529--545
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Hunan State Grid Electric Power Limited Company Power Supply Service Center (Metrology Center), Changsha, China
autor
  • Hunan State Grid Electric Power Limited Company Power Supply Service Center (Metrology Center), Changsha, China
autor
  • Hunan State Grid Electric Power Limited Company Power Supply Service Center (Metrology Center), Changsha, China
autor
  • Hunan State Grid Electric Power Limited Company Power Supply Service Center (Metrology Center), Changsha, China
Bibliografia
  • [1] Zamani, H., Karimi-Ghartemani, M., & Mojiri, M. (2018). Analysis of Power System Oscillations from PMU Data Using an EPLL-Based Approach. IEEE Transactions on Instrumentation and Measurement, 67(2), 307-316. https://doi.org/10.1109/tim.2017.2777538
  • [2] Song, J., Zhang, J., Kuang, H., & Wen, H. (2023). Dynamic Synchrophasor Estimation Based on Weighted Real-Valued Sinc Interpolation Method. IEEE Sensors Journal, 23(1), 588-598. https://doi.org/10.1109/jsen.2022.3224365
  • [3] Morshed, M. J., & Fekih, A. (2019). A Probabilistic Robust Coordinated Approach to Stabilize Power Oscillations in DFIG-Based Power Systems. IEEE Transactions on Industrial Informatics, 15(10), 5599-5612. https://doi.org/10.1109/tii.2019.2901935
  • [4] Sun, Z., Cai, G., Yang, D., Liu, C., Wang, B., & Wang, L. (2019). A Method for the Evaluation of Generator Damping During Low-Frequency Oscillations. IEEE Transactions on Power Systems, 34(1), 109-119. https://doi.org/10.1109/tpwrs.2018.2868717
  • [5] Song, J., Zhang, J., & Wen, H. (2021). Accurate Dynamic Phasor Estimation by Matrix Pencil and Taylor Weighted Least Squares Method. IEEE Transactions on Instrumentation and Measurement, 70, 1-11. https://doi.org/10.1109/tim.2021.3066187
  • [6] Khalilinia, H., & Venkatasubramanian, V. M. (2015). Modal Analysis of Ambient PMU Measurements Using Orthogonal Wavelet Bases. IEEE Transactions on Smart Grid, 6(6), 2954-2963. https://doi.org/10.1109/tsg.2015.2410138
  • [7] Zhang, J., Song, J., Li, C., Xu, X., & Wen, H. (2024). Novel Frequency Estimator for Distorted Power System Signals Using Two-Point Iterative Windowed DFT. IEEE Transactions on Industrial Electronics, 1-12. https://doi.org/10.1109/tie.2023.3347846
  • [8] Hwang, J. K., & Liu, Y. (2016). Identification of interarea modes from ringdown data by curve-fitting in the frequency domain. IEEE Transactions on Power Systems, 32(2), 842-851. https://doi.org/10.1109/Tpwrs.2016.2588478
  • [9] Rueda, J. L., Juarez, C. A., & Erlich, I. (2011). Wavelet-Based Analysis of Power System Low-Frequency Electromechanical Oscillations. IEEE Transactions on Power Systems, 26(3), 1733-1743. https://doi.org/10.1109/tpwrs.2010.2104164
  • [10] Avdakovic, S., Nuhanovic, A., Kusljugic, M., & Music, M. (2012). Wavelet transform applications in power system dynamics. Electric Power Systems Research, 83(1), 237-245. https://doi.org/10.1016/j.epsr.2010.11.031
  • [11] Hosseini, S. A., Amjady, N., & Velayati, M. H. (2015). A Fourier Based Wavelet Approach Using Heisenberg’s Uncertainty Principle and Shannon’s Entropy Criterion to Monitor Power System Small Signal Oscillations. IEEE Transactions on Power Systems, 30(6), 3314-3326. https://doi.org/10.1109/tpwrs.2014.2377180
  • [12] Wang, K., Wang, J., Song, J., Tang, L., Shan, X., & Wen, H. (2023). Accurate DFT Method for Power System Frequency Estimation Considering Multi-Component Interference. IEEE Transactions on Instrumentation and Measurement, 72, 1-11. https://doi.org/10.1109/tim.2023.3322493
  • [13] Song, J., Shan, X., Zhang, J., & Wen, H. (2024). Parameter Estimation of Power System Oscillation Signals under Power Swing Based on Clarke-Discrete Fourier Transform. Electronics, 13(2), 297. https://doi.org/10.3390/electronics13020297
  • [14] Wies, R. W., Pierre, J. W., & Trudnowski, D. J. (2003). Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems. IEEE Transactions on Power Systems, 18(1), 167-173. https://doi.org/10.1109/tpwrs.2002.807116
  • [15] Zhou, N., Pierre, J. W., Trudnowski, D. J., & Guttromson, R. T. (2007). Robust RLS Methods for Online Estimation of Power System Electromechanical Modes. IEEE Transactions on Power Systems, 22(3), 1240-1249. https://doi.org/10.1109/tpwrs.2007.901104
  • [16] Ning Zhou, Trudnowski, D. J., Pierre, J. W., & Mittelstadt, W. A. (2008). Electromechanical Mode Online Estimation Using Regularized Robust RLS Methods. IEEE Transactions on Power Systems, 23(4), 1670-1680. https://doi.org/10.1109/tpwrs.2008.2002173
  • [17] Hauer, J. F., Demeure, C. J., & Scharf, L. L. (1990). Initial results in Prony analysis of power system response signals. IEEE Transactions on Power Systems, 5(1), 80-89. https://doi.org/10.1109/59.49090
  • [18] Hauer, J. F. (1991). Application of Prony analysis to the determination of modal content and equivalent models for measured power system response. IEEE Transactions on Power Systems, 6(3), 1062-1068. https://doi.org/10.1109/59.119247
  • [19] Tripathy, P., Srivastava, S. C., & Singh, S. N. (2011). A Modified TLS-ESPRIT-Based Method for Low-Frequency Mode Identification in Power Systems Utilizing Synchrophasor Measurements. IEEE Transactions on Power Systems, 26(2), 719-727. https://doi.org/10.1109/tpwrs.2010.2055901
  • [20] Philip, J. G., & Jain, T. (2018). Analysis of low frequency oscillations in power system using EMO ESPRIT. International Journal of Electrical Power & Energy Systems, 95, 499-506. https://doi.org/10.1016/j.ijepes.2017.08.037
  • [21] Chen, J., Jin, T., Mohamed, M. A., & Wang, M. (2019). An Adaptive TLS-ESPRIT Algorithm Based on an S-G Filter for Analysis of Low Frequency Oscillation in Wide Area Measurement Systems. IEEE Access, 7, 47644-47654. https://doi.org/10.1109/access.2019.2908629
  • [22] Pande, P. W., Chakrabarti, S., Srivastava, S. C., & Sarkar, S. (2020). A Clustering-Based Approach for Estimation of Low Frequency Oscillations in Power Systems. IEEE Transactions on Power Systems, 35(6), 4666-4677. https://doi.org/10.1109/tpwrs.2020.2992125
  • [23] Jin, T., Liu, S., & Flesch, R. C. C. (2017). Mode identification of low-frequency oscillations in power systems based on fourth-order mixed mean cumulant and improved TLS-ESPRIT algorithm. IET Generation, Transmission & Distribution, 11(15), 3739-3748. https://doi.org/10.1049/iet-gtd.2016.2131
  • [24] Song, J., & Wen, H. (2020, May). Dynamic phasor estimations by using matrix pencil and Taylor least squares method. In 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1-6). IEEE. https://doi.org/10.1109/I2MTC43012.2020.9128420
  • [25] Song, J., Mingotti, A., Zhang, J., Peretto, L., & Wen, H. (2022). Accurate Damping Factor and Frequency Estimation for Damped Real-Valued Sinusoidal Signals. IEEE Transactions on Instrumentation and Measurement, 71, 1-4. https://doi.org/10.1109/tim.2022.3220300
  • [26] Song, J., Mingotti, A., Zhang, J., Peretto, L., & Wen, H. (2022). Fast Iterative-Interpolated DFT Phasor Estimator Considering Out-of-Band Interference. IEEE Transactions on Instrumentation and Measurement, 71, 1-14. https://doi.org/10.1109/tim.2022.3203459
  • [27] Pande, P. W., Kumar, B. R., Chakrabarti, S., Srivastava, S. C., Sarkar, S., & Sharma, T. (2020). Model order estimation methods for low frequency oscillations in power systems. International Journal of Electrical Power & Energy Systems, 115, 105438. https://doi.org/10.1016/j.ijepes.2019.105438
  • [28] Wen, L., Song, J., Liu, Y., Zhang, J., & Wen, H. (2021, September). Power system low frequency oscillations analysis based on adaptive ESPRIT method. In 2021 IEEE 11th International Workshop on Applied Measurements for Power Systems (AMPS) (pp. 1-6). IEEE. https://doi.org/10.1109/amps50177.2021.9586039
  • [29] Manolakis, D. G., Ingle, V.K., & Kogon, S. M. (2000). Statistical and Adaptive Signal Processing. Artech House Publishers.
  • [30] Song, J., Zhu, L., Mingotti, A., Peretto, L., & Wen, H. (2023, May). Adaptively Determination of Model Order of SVD-based Harmonics and Interharmonics Estimation. In 2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1-5). IEEE.
  • [31] Netto, M., & Mili, L. (2018). Robust Data Filtering for Estimating Electromechanical Modes of Oscillation via the Multichannel Prony Method. IEEE Transactions on Power Systems, 33(4), 4134-4143. https://doi.org/10.1109/tpwrs.2017.2775063
  • [32] Rauch, H. E., Tung, F., & Striebel, C. T. (1965). Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8), 1445-1450. https://doi.org/10.2514/3.3166
  • [33] Jain, S. K., & Singh, S. N. (2012). Exact Model Order ESPRIT Technique for Harmonics and Interharmonics Estimation. IEEE Transactions on Instrumentation and Measurement, 61(7), 1915-1923. https://doi.org/10.1109/tim.2012.2182709
  • [34] Banerjee, P., & Srivastava, S. C. (2015). An Effective Dynamic Current Phasor Estimator for Synchrophasor Measurements. IEEE Transactions on Instrumentation and Measurement, 64(3), 625-637. https://doi.org/10.1109/tim.2014.2349232
  • [35] Maslennikov, S., Wang, B., Zhang, Q., & Litvinov, E. (2016, July). A test cases library for methods locating the sources of sustained oscillations. In 2016 IEEE Power and Energy Society General Meeting (PESGM) (pp. 1-5). IEEE. https://doi.org/10.1109/pesgm.2016.7741772
Uwagi
1. This work was solely supported by the State Grid Corporation of China Headquarters as a science and technology project (Project No. 5400-202323233A-1-1-ZN).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b81b52c-587e-49b6-8f60-bf8b02fe64f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.