PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of voids and backfill on seismic wave velocity-preliminary results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, laboratory experiments were conducted on discrete physical models that mimic mining effects to better understand the impact of continuous changes in mining environments on seismic wave velocities. The discrete physical models are represented by concrete and granite cubic samples of different sizes with holes of different diameters filled and unfilled with cemented sand backfill of different cement-sand content ratios. The hole diameters range from 0 to 150 mm in block sizes ranging from 150 mm to 450 mm in increments of 75 mm. The increasing hole size mimics increasing extraction in the mine with time. Cemented sand fills at cement contents ranging from 0 to 20% are used to fill the voids after testing them empty and retesting the same at different backfill cured ages. The SAEU3H AE eight-channel system is used in the study. Preliminarily results show that the impact of continuous changes in mining environments significantly affects the seismic wave velocities. The impact of voids and their contents on the seismic wave velocity depends on the sensor location relative to source and void, and it backfills cement content with time.
Rocznik
Strony
319--333
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Nazarbayev University, School of Mining and Geosciences, Nur-Sultan, Kazakhstan
  • Nazarbayev University, School of Mining and Geosciences, Nur-Sultan, Kazakhstan
  • Nazarbayev University, School of Mining and Geosciences, Nur-Sultan, Kazakhstan
  • Karaganda Technical University, Department of Development of Mineral Deposits, Karaganda, Kazakhstan
Bibliografia
  • [1] Palei SK, Das SK. Logistic regression model for prediction of roof fall risks in bord and pillar workings in coal mines: an approach. Saf Sci [Internet]. Elsevier 2009;vol. 47:88-96. Available from: https://doi.org/10.1016/j.ssci.2008.01.002.
  • [2] Fall M, Célestin JC, Pokharel M, Touré M. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill. Elsevier B.V. Eng Geol Invest 2010;114:397-413. Available from: https://doi.org/10.1016/j.enggeo.2010.05.016.
  • [3] Shi X, Jing H, Yin Q, Zhao Z, Han G, Gao Y. Investigation on physical and mechanical properties of bedded sandstone after high-temperature exposure. Bull Eng Geol Environ. Bulletin of Engineering Geology and the Environment 2020;79:2591-606.
  • [4] Ranjith PG, Zhao J, Ju M, De Silva RVS, Rathnaweera TD, Bandara AKMS. Opportunities and challenges in deep mining: a brief review. Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company Engineering 2017;vol. 3:546-51. Available from: https://doi.org/10.1016/J.ENG.2017.04.024.
  • [5] Xie H, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Yanshilixue Yu Gongcheng Xuebao/Chinese J Rock Mech Eng. 2015;34:2161-78.
  • [6] Collins DS, Pinnock I, Toya Y, Shumila V, Trifu CI. Seismic event location and source mechanism accounting for complex block geology and voids. 48th US Rock Mech/Geomech Symp. 2014;1:63-9.
  • [7] Trifu CI, Shumila V. Geometrical and inhomogeneous ray-path effects on the characterization of open-pit seismicity. 44th US Rock Mech Symp - 5th US/Canada Rock Mech Symp; 2010.
  • [8] Vilhelm J, Ivankina T, Lokajíček T, Rudajev V. Comparison of laboratory and field measurements of P and S wave velocities of a peridotite rock. Int J Rock Mech Min Sci 2016;88:235-41.
  • [9] Wulff AM, Raab S, Huenges E. Alteration of seismic wave properties and fluid permeability in sandstones due to microfracturing. Phys Chem Earth, Part A Solid Earth Geod 2000;25:141-7.
  • [10] Memon RP, Sam ARM, Awang AZ, Memon UI. Effect of improper curing on the properties of normal strength concrete. Eng Technol Appl Sci Res 2018;8:3536-40.
  • [11] C109/109M-16a A. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or cube specimens). Annu Book ASTM Stand 2016:1-10.
  • [12] CAMIRO. Canadian rockbursts handbook6 Volumes. Mining Research Directorate; 1996.
  • [13] Dong L, Sun D, Li X, Du K. Theoretical and experimental studies of localization methodology for AE and microseismic sources without pre-measured wave velocity in mines. 2017. See, http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
  • [14] Yassin A. ENGR 489: NDT Spring 2020 Acoustic emission testing (AET) submitted by : students' name supervised by: instructor: Dr . Ameen El Sinawi. 2020. 0-vol. 33.
  • [15] Grosse CU, Masayasu Ohtsu, Aggelis DG, Shiotani T. Acoustic emission testing basics for research - applications in engineering [Internet]. Springer; 2022. Available from: http://www.springer.com/series/15088.
  • [16] Dong L, Li X. A microseismic/acoustic emission source location method using arrival times of PS waves for unknown velocity system, 2013 using arrival times of PS waves for unknown velocity system. Int J Distributed Sens Netw 2013;2013:8. https://doi.org/10.1155/2013/307489. Article ID 307489.
  • [17] Ge M, Hardy Jr HR, Wang H, Wang J. Development of a simple mechanical impact system as a non-explosive seismic source. Geotech Geol Eng 2011;29(1):137-42.
  • [18] Kennett BLN, Marson-Pidgeon K, Sambridge MS. Seismic source characterization using a Neighbourhood Algorithm. Geophys Res Lett 2000;27(20):3401-4.
  • [19] Nivesrangsan P, Steel JA, Reuben RL. Source location of acoustic emission in diesel engines. Mech Syst Signal Process 2007;21(2):1103-14.
  • [20] Ammon CJ, Velasco AA, Lay T, Wallace TC. Foundations of seismology. 2nd ed. Academic Press; 2021.
  • [21] Hedley DGF. Rockburst handbook for ontario hardrocr mines. CANMET special report SP92-1E. 1992.
  • [22] Blake W, Leighton FW, Duvall W. Microseismic techniques for monitoring the behaviour of rock structures. Bull (Arch Am Art) 1974;vol. 665. U.S. Bureau of Mines.
  • [23] Peng P, Jiang Y, Wang L, He Z, Tu S. Mining-induced seismicity by considering underground voids. 2020. https://doi.org/10.3390/app10196763.
  • [24] Morkel IG, Wesseloo J, Potvin Y. Seismic event location uncertainty in mining with reference to caving. Adelaide, Australia: Cav-2022; 2022.
  • [25] Lee YH, Oh T. The measurement of P-, S-, and R-wave velocities to evaluate the condition of reinforced and prestressed concrete slabs. Adv Mater Sci Eng 2016;2016:14p. https://doi.org/10.1155/2016/1548215.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b8052f1-1a23-486d-b641-ba6f7685e2db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.