PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting the vessel lumen area tree-ring parameter of Quercus robur with linear and nonlinear machine learning algorithms

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate-growth relationships in Quercus robur chronologies for vessel lumen area (VLA) from two oak stands (QURO-1 and QURO-2) showed a consistent temperature signal: VLA is highly correlated with mean April temperature and the temperature at the end of the previous growing season. QURO-1 showed significant negative correlations with winter sums of precipitation. Selected climate variables were used as predictors of VLA in a comparison of various linear and nonlinear machine learning methods: Artificial Neural Networks (ANN), Multiple Linear Regression (MLR), Model Trees (MT), Bagging of Model Trees (BMT) and Random Forests of Regression Trees (RF). ANN outperformed all the other regression algorithms at both sites. Good performance also characterised RF and BMT, while MLR, and especially MT, displayed weaker performance. Based on our results, advanced machine learning algorithms should be seriously considered in future climate reconstructions.
Czasopismo
Rocznik
Strony
211--222
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
  • Slovenian Forestry Institute, Department of Forest Yield and Silviculture, Večna pot 2, 1000 Ljubljana, Slovenia
autor
  • Jožef Stefan Institute, Department of Knowledge Technologies, Jamova cesta 39, 1000 Ljubljana, Slovenia
  • Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
autor
  • Slovenian Forestry Institute, Department of Forest Yield and Silviculture, Večna pot 2, 1000 Ljubljana, Slovenia
Bibliografia
  • 1. ARSO, 2017. Archive – observed and measured meteorological data in Slovenia. WEB Site:http://meteo.arso.gov.si/met/sl/archive/. Accesed: 2017 August 8.
  • 2. Ballesteros JA, Stoffel M, Bollschweiler M, Bodoque JM and Díez-Herrero A, 2010. Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Tree Physiology30(6): 773–781, DOI 10.1093/treephys/tpq031.
  • 3. Balybina AS, 2010. Reconstructing the air temperature from dendrochronological data from the Preolkhon area using the neural network method. Geography and Natural Resources 31(1): 30−33, DOI 10.1016/j.gnr.2010.03.006.
  • 4. Billings SA, Glaser SM, Boone AS and Stephen FM, 2015. Nonlinear tree growth dynamics predict resilience to disturbance. Ecosphere 6(11): 1–13, DOI 10.1890/ES15-00176.1.
  • 5. Bishop CM, 1995. Neural Networks for Pattern RecognitionOxford, University Press, Inc.: 482 pp.
  • 6. Braak CJFT and Gremmen NJM, 1987. Ecological Amplitudes of Plant Species and the Internal Consistency of Ellenberg's Indicator Values for Moisture. Vegetatio69(1/3): 79–87, DOI 10.1007/BF00038689.
  • 7. Breiman L, 1996. Bagging predictors. Machine Learning 24(2): 123−140, DOI 10.1023/A:1018054314350.
  • 8. Breiman L, 2001. Random forests. Machine Learning 45(1): 5−32, DOI 10.1023/A:1010933404324.
  • 9. Briffa KR, Jones PD, Pilcher JR and Hughes MK, 1988. Reconstructing summer temperatures in northern Fennoscandinavia back to A.D.1700 using tree ring data from Scots Pine. Arctic and Alpine Research 20: 385–394, DOI 10.2307/1551336.
  • 10. Burden F and Winkler D, 2008. Bayesian regularization of neural networks. In: Livingstone DJ, ed., Artificial Neural Networks: Methods and ApplicationsHumana Press, Totowa, NJ, 458: 23−42.
  • 11. Campelo F, Nabais C, Gutierrez E, Freitas H and Garcia-Gonzalez I, 2010. Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width. Trees-Structure and Function24(3): 463–470, DOI 10.1007/s00468-010-0414-0.
  • 12. Cook ER and Kairiukstis LA, 1992. Methods of Dendrochronology : Applications in the Environmental SciencesDordrecht, Kluwer Academic Publishers: 394 pp.
  • 13. Cook ER and Pederson N, 2011. Uncertainty, Emergence, and Statistics in Dendrochronology. In: Hughes MK, TW Swetnam, HF Diaz, eds., Dendroclimatology: Progress and ProspectsSpringer Netherlands, Dordrecht: 77−112.
  • 14. Copini P, den Ouden J, Robert EMR, Tardif JC, Loesberg WA, Goudzwaard L and Sass-Klaassen U, 2016. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees. Frontiers in Plant Science 7: 775, DOI 10.3389/fpls.2016.00775.
  • 15. D'Odorico P, Revelli R and Ridolfi L, 2000. On the use of neural networks for dendroclimatic reconstructions. Geophysical Research Letters 27(6): 791−794, DOI 10.1029/1999GL011049.
  • 16. Fonti P and Garcia-Gonzalez I, 2008. Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. Journal of Biogeography 35(12): 2249−2257, DOI 10.1111/j.1365-2699.2008.01961.x.
  • 17. Fonti P, von Arx G, Garcia-Gonzalez I, Eilmann B, Sass-Klaassen U, Gartner H and Eckstein D, 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist 185(1): 42–53, DOI 10.1111/j.1469-8137.2009.03030.x.
  • 18. Fritts HC, 1976. Tree Rings and ClimateLondon, Academic Press: 567 pp.
  • 19. Garcia-Gonzalez I and Eckstein D, 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 23(7): 497–504, DOI 10.1093/treephys/23.7.497.
  • 20. Garcia-Gonzalez I and Fonti P, 2008. Ensuring a representative sample of earlywood vessels for dendroecological studies: an example from two ring-porous species. Trees-Structure and Function 22(2): 237–244, DOI 10.1007/s00468-007-0180-9.
  • 21. Gonzalez-Gonzalez BD, Garcia-Gonzalez I and Vazquez-Ruiz RA, 2013. Comparative cambial dynamics and phenology of Quercus robur L. and Q-pyrenaica Willd. in an Atlantic forest of the northwestern Iberian Peninsula. Trees-Structure and Function 27(6): 1571–1585, DOI 10.1007/s00468-013-0905-x.
  • 22. González-González BD, Vázquez-Ruiz RA and García-González I, 2015. Effects of climate on earlywood vessel formation of Quercus robur and Q. pyrenaica at a site in the northwestern Iberian Peninsula. Canadian Journal of Forest Research 45(6): 698–709, DOI 10.1139/cjfr-2014-0436.
  • 23. Goršić E, 2013. Diameter increment dynamics of pedunculate oak (Quercus robur L.) in Croatia. Ph.D. dissertation, University of Zagreb, Zagreb: 154 pp.
  • 24. Gričar J, 2010. Xylem and phloem formation in sessile oak from Slovenia in 2007. Wood Research 55(4): 15−22.
  • 25. Hastie T, Tibshirani R and Friedman JH, 2009. The Elements of Statistical Learning : Data Mining, Inference, and Prediction. New York, Springer: 745 pp.
  • 26. Helama S, Makarenko NG, Karimova LM, Kruglun OA, Timonen M, Holopainen J, Merilainen J and Eronen M, 2009. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms. Annales Geophysicae 27(3): 1097−1111, DOI 10.5194/angeo-27-1097-2009.
  • 27. Helama S, Sohar K, Läänelaid A, Bijak S and Jaagus J, 2018. Reconstruction of precipitation variability in Estonia since the eighteenth century, inferred from oak and spruce tree rings. Climate Dynamics 50(11): 4083–4101, DOI 10.1007/s00382-017-3862-z.
  • 28. Ho TK, 1995. Random decision forestsIn Proceedings of the Third International Conference on Document Analysis and Recognition. Montreal, Canada: 278−282 pp.
  • 29. Hornik K, Buchta C and Zeileis A, 2009. Open-source machine learning: R meets Weka. Computational Statistics 24(2): 225−232, DOI 10.1007/s00180-008-0119-7.
  • 30. Jevšenak J, Džeroski S and Levanič T, 2017. On the use of machine learning methods to study the relationships between tree-ring characteristics and the environment. Acta silvae et ligni 114: 21−29, DOI 10.20315/ASetL.114.2.
  • 31. Jevšenak J and Levanič T, 2014. Macro EWVA - an effective tool for analysis of earlywood conduits of ring porous species. Acta silvae et ligni104: 15−24, DOI 10.20315/ASetL.104.2.
  • 32. Jevšenak J and Levanič T, 2015. Dendrochronological and wood-anatomical features of differently vital pedunculate oakQuercus roburL.) stands and their response to climate. Topola 195/196: 85−96.
  • 33. Jevšenak J and Levanič T, 2016. Should artificial neural networks replace linear models in tree ring based climate reconstructions? Dendrochronologia40: 102−109, DOI 10.1016/j.dendro.2016.08.002.
  • 34. Jevšenak J and Levanič T, 2018. dendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data. Dendrochronologia 48: 32−39, DOI 10.1016/j.dendro.2018.01.005.
  • 35. Jones PD and Bradley RS, 1992. Climatic variations in the longest instrumental records. In: Jones PD, RS Bradley, eds.,Climate Since A.D. 1500 Routledge, London: 246−268.
  • 36. Kames S, Tardif JC and Bergeron Y, 2016. Continuous earlywood vessels chronologies in floodplain ring-porous species can improve dendrohydrological reconstructions of spring high flows and flood levels. Journal of Hydrology 534: 377–389, DOI 10.1016/j.jhydrol.2016.01.002.
  • 37. Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, Benesty M, Lescarbeau R, Ziem A, Scrucca L, Tang Y, Candan C, Hunt T and the R Core Team, 2017. caret: Classification and Regression Training. R package version 6.0-76, WEB Site: https://CRAN.R-project.org/package=caret. Accesed: 2017 August 10.
  • 38. Levanič T, 2007. ATRICS - A new system for image acquisition in dendrochronology. Tree-Ring Research 63(2): 117−122, DOI 10.3959/1536-1098-63.2.117.
  • 39. Lorenz EN, 1956. Empirical Orthogonal Functions and Statistical Weather PredictionMassachusetts, Massachusetts Institute of Technology, Department of Meteorology: 49 pp.
  • 40. Matisons R and Dauškane I, 2009. Influence of climate on earlywood vessel formation of Quercus robur at its northern distribution range in central regions of Latvia. Acta Universitatis Latviensis 753: 49–58.
  • 41. Montoro Girona M, Rossi S, Lussier J-M, Walsh D and Morin H, 2017. Understanding tree growth responses after partial cuttings: A new approach. PLoS ONE12(2): e0172653, DOI 10.1371/journal.pone.0172653.
  • 42. Ni FB, Cavazos T, Hughes MK, Comrie AC and Funkhouser G, 2002. Cool-season precipitation in the southwestern USA since AD 1000: Comparison of linear and nonlinear techniques for reconstruction. International Journal of Climatology 22(13): 1645−1662, DOI 10.1002/joc.804.
  • 43. Perez-de-Lis G, Rossi S, Vazquez-Ruiz RA, Rozas V and Garcia-Gonzalez I, 2016. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytologist 209(2): 521–530, DOI 10.1111/nph.13610.
  • 44. Pérez-Rodríguez P and Gianola D, 2016. Brnn: Brnn (Bayesian Regularization forFeed-forward Neural Networks). R package version 0.6, WEB Site: http://CRAN.R-project.org/package=brnn. Accesed: 2017 April 20.
  • 45. Pérez-Rodríguez P, Gianola D, Weigel KA, Rosa GJM and Crossa J, 2013. Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding. Journal of Animal Science 91(8): 3522–3531, DOI 10.2527/jas.2012-6162.
  • 46. Quinlan JR, 1992. Learning with continuous classesIn Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (AI '92). Hobart: 343−348 pp.
  • 47. R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, WEB Site: http://www.R-project.org/. Accesed: 2017 November 15.
  • 48. Sass-Klaassen U, Sabajo CR and den Ouden J, 2011. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29(3): 171–175, DOI 10.1016/j.dendro.2011.01.002.
  • 49. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P and Cardona A, 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9(7): 676−682, DOI 10.1038/nmeth.2019.
  • 50. Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP and Sandberg G, 2003. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proceedings of the National Academy of Sciences of the United States of America100(17): 10096–10101, DOI 10.1073/pnas.1633693100.
  • 51. Shishov VV, Tychkov II, Popkova MI, Ilyin VA, Bryukhanova MV and Kirdyanov AV, 2016. VS-oscilloscope: A new tool to parameterize tree radial growth based on climate conditions. Dendrochronologia 39: 42–50, DOI 10.1016/j.dendro.2015.10.001.
  • 52. St George S and Nielsen E, 2000. Signatures of high-magnitude 19th-century floods in Quercus macrocarpa tree rings along the Red River, Manitoba, Canada. Geology 28(10): 899–902, DOI 10.1130/0091-7613(2000)28<899:SOHTFI>2.0.CO;2.
  • 53. Sun Y, Bekker MF, DeRose RJ, Kjelgren R and Wang SYS, 2017. Statistical treatment for the wet bias in tree-ring chronologies: A case study from the Interior West, USA. Environmental and Ecological Statistics 24(1): 131−150, DOI 10.1007/s10651-016-0363-x.
  • 54. Tolwinski-Ward SE, Evans MN, Hughes MK and Anchukaitis KJ, 2011. An efficient forward model of the climate controls on inter-annual variation in tree-ring width. Climate Dynamics 36(11–12): 2419−2439, DOI 10.1007/s00382-010-0945-5.
  • 55. Tumajer J and Treml V, 2016. Response of floodplain pedunculate oak Quercus roburL.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. Forest Ecology and Management 379: 185–194, DOI 10.1016/j.foreco.2016.08.013.
  • 56. Vaganov EA, Anchukaitis KJ and Evans MN, 2011. How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics. In: Hughes MK, TW Swetnam, HF Diaz, eds., Dendroclimatology: Progress and Prospects. Developments in Paleoenvironmental ResearchSpringer Netherlands, 11: 37–75.
  • 57. Williams AP, Michaelsen J, Leavitt SW and Still CJ, 2010. Using Tree Rings to Predict the Response of Tree Growth to Climate Change in the Continental United States during the Twenty-First Century. Earth Interactions 14(19): 1–20, DOI 10.1175/2010EI362.1.
  • 58. Willmott CJ, 1981. On the validation of models. Physical Geography 2(2): 184−194.
  • 59. Witten IH, Frank E and Hall MA, 2011. Data Mining: Practical Machine Learning Tools and TechniquesBurlington, Morgan Kaufmann Publishers: 629 pp.
  • 60. Zhang QB, Hebda RJ, Zhang QJ and Alfaro RI, 2000. Modeling tree-ring growth responses to climatic variables using artificial neural networks. Forest Science 46(2): 229−239.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b75fa9a-83ca-4ac1-b588-87faea7d2c8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.