PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Localization results for the non-truncated max-product sampling operators based on Fejér and sinc-type kernels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we obtain strong localization results and local direct results in the approximation of continuous functions by the non-truncated max-product sampling operators based on Fejér and sinc (Wittaker)-type kernels. These operators present potential applications in signal theory.
Wydawca
Rocznik
Strony
38--49
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Department of Mathematics and Computer Science The University of Oradea Universitatii 1, 410087, Oradea, Romania
autor
  • Department of Mathematics and Computer Science The University of Oradea Universitatii 1, 410087, Oradea, Romania
Bibliografia
  • [1] C. Bardaro, P. L. Butzer, R. L. Stens, G. Vinti, Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals, J. Math. Anal. Appl. 316 (2006), 269–306.
  • [2] C. Bardaro, P. L. Butzer, R. L. Stens, G. Vinti, Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampl. Theory Signal Image Process. 6(1) (2007), 19–52.
  • [3] C. Bardaro, P. L. Butzer, R. L. Stens, G. Vinti, Prediction by samples from the past with error estimates covering discontinuous signals, IEEE Trans. Inform. Theory 56(1) (2010), 614–633.
  • [4] B. Bede, L. Coroianu, S. G. Gal, Approximation and shape preserving properties of the Bernstein operator of max-product kind, Int. J. Math. Math. Sci., vol. 2009, Article ID 590589, 26 pages, 2009. doi:10.1155/2009/590589
  • [5] B. Bede, L. Coroianu, S. G. Gal, Approximation and shape preserving properties of the nonlinear Meyer-König and Zeller operator of max-product kind, Numer. Funct. Anal. Optim. 31(3) (2010), 232–253.
  • [6] E. Borel, Sur l’interpolation, C. R. Acad. Sci. Paris 124 (1897), 673–676.
  • [7] P. L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition 3 (1983), 185–212.
  • [8] P. L. Butzer, W. Engels, S. Ries, R. L. Stens, The Shannon sampling series and the reconstruction of signals in terms of linear, quadratic and cubic splines, SIAM J. Appl. Math. 46(2) (1986), 299–323.
  • [9] P. L. Butzer, W. Splettstößer, R. L. Stens, The sampling theorems and linear prediction in signal analysis, Jahresber. Deutsch. Math-Verein 90 (1988), 1–70.
  • [10] P. L. Butzer, R. L. Stens, The Poisson summation formula, Whittaker’s cardinal series and approximate integration, in: Proc. Second Edmonton Conference on Approximation Theory, Canadian Math. Soc. 3(1983), 19–36.
  • [11] L. Coroianu, S. G. Gal, Approximation by nonlinear generalized sampling operators of max-product kind, Sampl. Theory Signal Image Process. 9(1–3) (2010), 59–75.
  • [12] L. Coroianu, S. G. Gal, Approximation by max-product sampling operators based on sinc-type kernels, Sampl. Theory Signal Image Process. 10(3) (2011), 211–230.
  • [13] L. Coroianu, S. G. Gal, Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels, Sampl. Theory Signal Image Process. 11(1) (2012), 113–132.
  • [14] L. Coroianu, S. G. Gal, Localization results for the Meyer-König and Zeller max-product operator, Numer. Funct. Anal. Optim. 34(7) (2013), 713–727.
  • [15] S. G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-Berlin, 2008.
  • [16] S. G. Gal, A possibilistic approach of the max-product Bernstein kind operators, Results Math. 65 (2014), 453–462.
  • [17] A. Kivinukk, G. Tamberg, Interpolating generalized Shannon sampling operators, their norms and approximation properties, Sampl. Theory Signal Image Process. 8(1) (2009), 77–95.
  • [18] A. Kivinukk, G. Tamberg, On approximation properties of sampling operators by dilated kernels, 8th Intern. Conf. on Sampling Theory and Applications, SampTA’09, Marseille, May 18-22, 2009, Poster sessions, electronic access at www.latp.univ-mrs.fr/SAMPTA09/FinalSubmissions/187.pdf
  • [19] G. Plana, Sur une nouvelle expression analytique des nombers Bernoulliens, Academia di Torino 25 (1820), 403–418.
  • [20] V. P. Sklyarov, On the best uniform sinc-approximation on a finite interval, East J. Approx. 14(2) (2008), 183–192.
  • [21] R. L. Stens, Approximation of functions by Whittaker’s cardinal series, in: General Inequalities 4, Proc. Conference, Oberwolfach, Germany, May 1983, W. Walter ed., ISNM 71, Birkhauser Verlag, Basel, pp. 137–149, 1984.
  • [22] M. Theis, Über eine Interpolationsformel von de la Vallée-Poussin, Math. Z. 3 (1919), 93–113.
  • [23] A. Yu. Trynin, A criterion for the uniform convergence of sinc-approximation on a segment, Russian Math. (Iz. VUZ) 52(6) (2008), 58–69.
  • [24] E. T. Whittaker, On the functions which are represented by expansions of the interpolation theory , Proc. Roy. Soc. Edinburgh 35 (1915), 181–194.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b73d298-e7b9-4360-a3bf-8de2749204d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.