Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Most of the existing toxic gas mitigation techniques have difficulty in practical implementation. More effective mitigation methods are required for handling hazardous gas releases in Chemical Process Industries (CPIs). One of the most hazardous chemicals is chlorine, an integral part of almost all chemical industries, especially chlor-alkali. This study examined a possible accidental spill of liquid chlorine from a chlorine storage area. Computational Fluid Dynamics, Process Hazard Analysis Software Tool (PHAST), and Probit analysis were combined to develop the overall effect and vulnerability models. The dispersion of chlorine vapors at wind speeds of 2, 3, and 4 m/s was analyzed, and the corresponding threat zones were plotted. Many public establishments of extreme vulnerability were located inside the threat zones. Offsite emergency planning guidelines are necessary for such conditions. Based on the results of the consequence analysis, a practical and cost-efficient IoT (Internet of Things) based mitigation system using physical barriers is proposed. The proposed mitigation system accounts for entrapment, continuous removal, and safe handling of the chlorine vapor from the release area. The proposed mitigation system can be implemented in all CPIs dealing with the production and storage of toxic gases. The outcome of this study can contribute to the development of Emergency Response Planning (ERP) guidelines for chlorine release.
Rocznik
Tom
Strony
art. no. e51
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Government Engineering College, Department of Mechanical Engineering, Thrissur, Kerala, India
- APJ Abdul Kalam Technological University, Kerala, India
autor
- Government Engineering College, Department of Mechanical Engineering, Thrissur, Kerala, India
- Government Engineering College, Department of Mechanical Engineering, Idukki, Kerala, India
autor
- Government Engineering College, Department of Mechanical Engineering, Thrissur, Kerala, India
- APJ Abdul Kalam Technological University, Kerala, India
autor
- Indian Institute of Technology, Mechanical and Industrial Engineering, Roorkee, Uttarakhand, India
Bibliografia
- 1. Bisarya R.K., Puri S., 2005. The Bhopal gas tragedy – A perspective. J. Loss Prev. Process Ind., 18, 209–212. DOI: 10.1016/j.jlp.2005.07.006.
- 2. Britter R.E., McQuaid J., 1988. Workbook on the dispersion of dense gases. HSE Contract Report No 17/1988. UK Health and Safety Executive.
- 3. Buckley R.L., Hunter C.H., Werth D.W., Whiteside M.T., Chen K.-F., Mazzola C.A., 2012. A case study of chlorine transport and fate following a large accidental release. Atmos. Environ., 62,184–198. DOI: 10.1016/j.atmosenv.2012.08.025.
- 4. Cameron I.T., Raman R., 2005. Process systems risk management. 1st edition, Vol 6., Elsevier Academic Press, 205–207. CCPS, 1999. Guidelines for chemical process quantitative risk analysis. Center for Chemical Process Safety, John Wiley &Sons.
- 5. Census of India, 2011. Kerala Part XII-B Series-33 District Census Handbook Ernakulam Village and Town Wise Primary Census Abstract (PCA). Directorate of Census Operations Kerala, 516.
- 6. Dimbour J.P., Dandrieux A., Gilbert D., Dusserre G., 2003. The use of water sprays for mitigating chlorine gaseous releases escaping from a storage shed. J. Loss Prev. Process Ind., 16, 259–269. DOI: 10.1016/S0950-4230(03)00038-X.
- 7. Engelhardt D.F., 2002. Chlorine absorption on falling drops and transfer to water curtains. Gant S., Weil J., Delle Monache L., McKenna B., Garcia M.M., Tickle G., Tucker H., Stewart J., Kelsey A., McGillivray A., Batt R., Witlox H., Wardman M., 2018. Dense gas dispersion model development and testing for the Jack Rabbit II phase 1 chlorine release experiments. Atmos. Environ., 192, 218–240. DOI: 10.1016/j.atmosenv.2018.08.009.
- 8. Hakkinen P.J, 2005. Seveso disaster, and the seveso and seveso II directives, In: Wexler P (Ed.), Encyclopedia of Toxicology (Second Edition), 1–4. DOI: 10.1016/B0-12-369400-0/10011-0.
- 9. Hanna S., Dharmavaram S., Zhang J., Sykes I., Witlox H., Khajehnajafi S., Koslan K., 2008. Comparison of six widely-used dense gas dispersion models for three actual railcar accidents, In: Borrego C., Miranda A.I. (Eds.), Air pollution modeling and its application XIX. NATO Science for Peace and Security Series Series C: Environmental Security. Springer, Dordrecht. DOI: 10.1007/978-1-4020-8453-9_49.
- 10. Hendershot D., 2009. Remembering Flixborough. J. Chem. Health Saf., 16, 46–47. DOI: 10.1016/j.jchas.2009.03.006.
- 11. James M.D., 2014. Simplified methods of using probit analysis in consequence modeling. AIChE Spring Meeting and Global Congress on Process Safety, New Orleans, LA, 31 March 2014.
- 12. Availabe at: https://www.aiche.org/conferences/videos/conference-presentations/simplified-methods-using-probit-analysis-consequence-modeling.
- 13. Khan F.I., Abbasi S.A., 1999. Major accidents in process industries and an analysis of causes and consequences. J. Loss Prev. Process Ind., 12, 361–378. DOI: 10.1016/S0950-4230(98)00062-X.
- 14. Labib A., 2014. Chapter 7 – Chernobyl Disaster, In: Labib A. (Ed.), Learning from Failures. Butterworth-Heinemann, 97–106. DOI: 10.1016/b978-0-12-416727-8.00007-2.
- 15. Lee J.-Y., Lim D.-P., Lim D.-S., 2007. Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles. Composites, Part B, 38, 810–816. DOI: 10.1016/j.compositesb.2006.12.006.
- 16. Mannan S., 2005. Lees’ loss prevention in the process industries. Vol 1., 857–858. DOI: 10.1016/B978-0-7506-7555-0.X5081-6.
- 17. Marco E., Peña J.A., Santamarıìa J., 1998. The chlorine release at Flix ( Spain ) on January 21st 1996: a case study. J. Loss Prev. Process Ind., 11, 153–160. DOI: 10.1016/S0950-4230(97)00014-4.
- 18. Mukherjee S., Dharmavaram S., Jaskolka S., 2018. Effectiveness of water sprays in mitigating toxic releases. Proc. Safety Prog., 37, 256–262. DOI: 10.1002/prs.11948.
- 19. Murphy J.F., Hendershot D., Berger S., Summers A.E., Wiley R.J., 2014. Bhopal revisited. Proc. Safety Prog., 33, 310–313. DOI: 10.1002/prs.11716.
- 20. National Transportation Safety Board, 2006. Collision of Union Pacific Railroad Train MHOTU-23 With BNSF Railway Company Train MEAP-TUL-126-D with subsequent derailment and hazardous materials release, Macdona, Texas, June 28, 2004.
- 21. Railroad Accident Report NTSB/RAR-06/03. Washington, DC. Nicholson D., Lian N., Hedrick A., Schmidt E., 2017. Final test report for Jack Rabbit (Jr) II. ATEC Project No. 2015-DT-DPG-SNIMT-F9735. WDTC Document No. WDTC-SPD-FTR-001.
- 22. Pandya N., Gabas N., Marsden E., 2012. Sensitivity analysis of Phast’s atmospheric dispersion model for three toxic materials (nitric oxide, ammonia, chlorine). J. Loss Prev. Process Ind., 25, 20–32. DOI: 10.1016/j.jlp.2011.06.015.
- 23. Soman A.p.R., Sundararaj G., Devadasan S.R., 2012. Consequence assessment of chlorine release. Proc. Safety Prog., 31, 145–147. DOI: 10.1002/prs.11479.
- 24. Toxic industrial chemicals, 2002. BMJ Military Health, 148, 371–376. U.S Environmental Protection Agency, 2016. Code of Federal Reg- ulations, PART 355 – Emergency planning and notification, 449– 468. Available at: https://www.govinfo.gov/content/pkg/ CFR- 2016-title40-vol30/pdf/CFR-2016-title40-vol30-part355.pdf.
- 25. U.S. Chemical Safety and Hazard Investigation Board, 2003. DPC Enterprises Festus Chlorine Release. REPORT NO. 2002-04-I-MO, 99. Available at: https://www.csb.gov/dpc-enterprises-festus-chlorine-release.
- 26. Van Dang T., Duc Hoa N., Van Duy N., Van Hieu N., 2016. Chlorine gas sensing performance of on-chip grown ZnO, WO3,and SnO2 nanowire sensors. ACS Appl. Mater. Interfaces, 8, 4828–4837. DOI: 10.1021/acsami.5b08638.
- 27. Wang J., Yu X., Zong R., 2020. A dynamic approach for evaluating the consequences of toxic gas dispersion in the chemical plants using CFD and evacuation modelling. J. Loss Prev. Process Ind., 65, 104156. DOI: 10.1016/j.jlp.2020.104156.
- 28. Weber M., 2006. Some safety aspects on the design of sparger systems for the oxidation of organic liquids. Process Safety Prog., 25, 326–330. DOI: 10.1002/prs.10143.
- 29. Witlox H.W.M., Holt A., 1999a. A unified model for jet, heavy and passive dispersion including droplet rainout and re-evaporation. Center for Chemical Process Safety Conference 1999.
- 30. Witlox H.W.M., Holt A., 1999b. Unified dispersion model – Technical reference manual. UDM Version 6.0, June 1999, Det Norske Veritas, London.
- 31. Xin B., Yu J., Dang W., Wan L., 2021. Dynamic characteristics of chlorine dispersion process and quantitative risk assessment of pollution hazard. Environ. Sci. Pollut. Res., 28, 46161–46175. DOI: 10.1007/s11356-020-11864-z.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b70fa9e-3dab-4b3b-b2f3-d8b0df3fa924
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.