PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, zinc oxide (ZnO) nanorods were obtained by a simple chemical precipitation method in the presence of capping agent: polyvinyl pyrrolidone (PVP) at room temperature. X-ray diffraction (XRD) result indicates that the synthesized undoped ZnO nanorods have hexagonal wurtzite structure without any impurities. It has been observed that the growth direction of the prepared ZnO nanorods is [1 0 1]. XRD analysis revealed that the nanorods have the crystallite size of 49 nm. Crystallite size is calculated by Debye-Scherrer formula and lattice strain is calculated by Williomson-Hall equation. Cell volume, Lorentz factor, Lorentz polarization factor, bond length, texture coefficient, lattice constants and dislocation density have also been studied. We also compared the interplanar spacings and relative peak intensities with their standard values at different angles. The scanning electron microscope (SEM) images confirmed the size and shape of these nanorods. It has been found that the diameter of the nanorods ranges from 1.52 mu m to 1.61 mu m and the length is about 4.89 mu m. It has also been observed that at room temperature ultraviolet visible (UV-Vis) absorption band is around 355 nm (blue shifted as compared to the bulk). The average particle size has also been calculated by mathematical model of effective mass approximation equation, using UV-Vis absorption peak. Finally, the bandgap has been calculated using UV-absorption peak. Electroluminescence (EL) studies show that emission of light is possible at very small threshold voltage and it increases rapidly with increasing applied voltage. It is seen that smaller ZnO nanoparticles give higher electroluminescence brightness starting at lower threshold voltage. The brightness is also affected by increasing the frequency of AC signal.
Wydawca
Rocznik
Strony
751--759
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Rungta College of Engineering and Technology, Kohka Kurud Road, Bhilai (C.G.), India
  • Department of Physics, Surguja University (C.G), India
Bibliografia
  • [1] Morales A.M., Lieber C.M., Science, 279 (1998), 208.
  • [2] Dai H., Wong E.W., Lu Y.Z., Shoushan F., Lieber C.M., Nature, 375 (1995), 769.
  • [3] Han W.Q., Fan S.S., Li Q.Q., Hu Y.D., Science, 277 (1997), 1287.
  • [4] Zhan J.H., Yang X.G., Wang D.W., Li S.D., Xie Y., Xia Y.N., Qian Y.T., Adv. Mater., 12 (2000), 1348.
  • [5] Hu J., Odom T.W., Lieber C.M., Accounts Chem. Res., 5 (1999), 435.
  • [6] Rai R., Adv. Mater. Lett., 1 (2010), 55.
  • [7] Chen L., Pang X., Guangshui Y., Zhang J., Adv. Mater. Lett., 1 (2010), 75.
  • [8] Gautam S., Kumar S., Thakur P., Chae K.H., Kumar R., Koo B.H., Lee C.G., J. Phys. D Appl. Phys., 42 (2009), 175406.
  • [9] Azam A., Ahmed F., Arshi N., Chaman M., Naqvi A.H., J. Alloy. Compd., 496 (2010), 399.
  • [10] Kumar S., Kim G.W., Koo B.H., Sharma S.K., Knobel M., Chung H., Lee C.G., J. Nanosci. Nanotechno., 11 (2011), 555.
  • [11] Kumar S., Kim Y.J., Koo B.H., Lee C.G., J. Nanosci. Nanotechno., 10 (2010), 7204.
  • [12] Kumar S., Kim Y.J., Koo B.H., Choi H.K., Lee C.G., IEEE T. Magn., 45 (2009), 2439.
  • [13] Kumar S., Kim Y.J., Koo B.H., Sharma S.K., Knobel M., Meneses C.T., Shukla D.K., Kumar R., Lee C.G., J. Korean Phys. Soc., 55 (2009), 10108.
  • [14] Park Y.K., Inhan J., Kwak M.G., Yang H., Ju S.H., Cho W.S., J. Lumin., 78 (1998), 87.
  • [15] Zhao Q.X., Willander M., Morjan R.E., Hu Q.H., Campbell E.E.B., Appl. Phys. Lett., 83 (2003), 165.
  • [16] Elmer K., J. Phys. D Appl. Phys, 33 (2000), 17.
  • [17] Krunks M., Mellikov E., Thin Solid Films, 270 (1995), 33.
  • [18] Aranovich J.A., Golmayo D., Fahrenbruch A.L., Bube R.H., J. Appl. Phys., 51 (1980), 4260.
  • [19] Ozgur U., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Dogan S., Avrutin V., Cho S.J., Morkoc H., J. Appl. Phys., 98 (2005), 04130.
  • [20] Ahmed M.A.A., Phosphor materials and luminescent impurities for ACTFEL device, Brno University of Technology, Brno, 2004, p. 8.
  • [21] Jih-Jen W., Sai-Chang L., Adv. Mater., 14 (2002), 215.
  • [22] Fouchet A., Prellier W., Mercey B., Mechin L., Kulkarni V.N., Venktesan T., J. Appl. Phys., 96 (2004), 3228.
  • [23] Takikawa H., Kimura K., Miyano R., Sakakibara T., Thin Solid Films, 377 (2000), 74.
  • [24] Wang Q.P., Zhang D.H., Xue Z.Y., Hao X.T., Appl. Surf. Sci., 201 (2002), 123.
  • [25] Hanmei H., Mater. Chem. Phys., 106 (2007), 58.
  • [26] Eftekhari A., Molaei F., Arami H., Mat. Sci. Eng. A-Struct., 437 (2006), 446.
  • [27] Mazhdi M., Hossein Khani P., Int. J. Nano Dimens., 4 (2012), 233.
  • [28] Cullity B.D., Stock S.R., Elements of X-ray diffraction, Prentice Hall, New Jersey, 2001.
  • [29] Khorsand Zak A., Majid Abd W.H., Abrishami M.E., Yousefi R., Solid State Sci., 13 (2011), 251.
  • [30] Ilican S., Caglar Y., Caglar M., J. Optoelectron. Adv. M., 10 (2008), 2578.
  • [31] JOINT COMMITTEE ON POWDER DIFFRACTION STANDARDS, Powder Diffraction File, Card No.: 89-1397.
  • [32] Schulz H., Thiemann K.H., Solid State Commun., 9 (1979), 783.
  • [33] Pathinettam P.D., Marikani A., Cryst. Res. Technol., 11 (2002), 1241.
  • [34] JOINT COMMITTEE ON POWDER DIFFRACTION STANDARDS, Powder Diffraction File, Card No.: 36-1451.
  • [35] Yakuphanoglu F., Ilican S., Caglar M., Caglar Y., J. Optoelectron. Adv. M., 9 (2007), 2180.
  • [36] Williamson G.B., Smallman R.C., Philos. Mag., 1 (1956), 34.
  • [37] Kittel C., Introduction to Solid State Physics, John Wiley & Sons, New York, 2005.
  • [38] Yogamalar R., Srinivasan R., Vinu A., Ariga K., Bose A.C., Solid State Commun., 149 (2009), 1919.
  • [39] Sutta P., Jackuliak Q., Mater. Struct., 5 (1998), 10.
  • [40] Peiser H.S., Rooksby H.P., Wilson A.J.C., X-ray Diffraction by Polycrystalline Materials, Institute of Physics, London, 1955.
  • [41] Clark G.L., Applied X-rays, McGraw-Hill Book Company, New York, 1955.
  • [42] Compton A.H., Allison S.K., X-rays in Theory and Experiment, D. Van Nostrand Company, New York, 1935.
  • [43] Zhao J., Yan X., Lei Y., Zhao Y., Huang Y., Zhang Y., Adv. Mater. Res., 1 (2012), 75.
  • [44] Haase M., Weller H., Henglein A., J. Phys. Chem., 92 (1988), 482.
  • [45] Koch U., Fojtik A., Weller H., Henglein A., Chem. Phys. Lett., 122 (1985), 507.
  • [46] Shionoya S., Yen W.M., Yamamoto H., Phosphor Handbook, CRC Press, USA, 1998.
  • [47] Berger L.I., Semiconductor Materials, CRC Press, USA, 1997.
  • [48] Brus L., J. Phys. Chem. A, 12 (1986), 2555.
  • [49] Pesika N.S., Stebe K.J., Searson P.C., Adv. Mater., 15 (2003), 1289.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b61adbb-3e74-4df3-aded-02f620ebb7ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.