Jan Dtugosz University in Czestochowa

Scientific Issues, Mathematics XVI, Czestochowa 2011

FINDING THE SHORTEST PATH
BETWEEN VERTICES IN A GRAPH HANOI

Sergey Novikov

Institute of Computer Science,
Siedlce University of Natural Sciences and Humanities
ul. 8 Maja 54, 08-110 Siedlce, Poland
e-mail: novikov@uph.edu.pl

Abstract. Three algorithms for finding the shortest path between two vertices with
arbitrary labels of any fractal graph Hanoi S(k,n) and the exact estimation of the
minimal distance between these vertices for the case k > 3 and n < k are proposed.

1. Introduction

The problem “Multi-peg Tower of Hanoi” has many variations and generaliza-
tions in different directions [1].

In this paper we consider the following generalization: initial and terminal
configurations are any arbitrary (no regular) legal distributions of n disks
among k pegs; our goal is to get from a given arbitrary initial state to one
of the different states by the shortest path between legal configurations [2].
The shortest sequences of moves leading from a given initial configuration
to a given terminal configuration is equal to the shortest path between two
vertices V; , Vj of the special graph (graph Hanoi) with special labels [3].

This problem for & = 3 was investigated by Andreas Hinz in [3]. If the ini-
tial configuration is any arbitrary (no regular) node and terminal configuration
is perfect (regular) configuration, the shortest sequences of moves leading from
a given initial configuration to a given configuration is equal, on the average,
to (2/3) * (2" — 1).

We consider these problem for the case k£ > 3.

The main result of the proposed article is an algorithm for finding the
shortest path (A, B) between arbitrary vertices with labels A and B of a fractal
graph Hanoi H(k,n) for the case n < k and k > 3.

124 Sergey Novikov

Some components in the labels A and B may coincide. This means that the
disks in the appropriate configuration A are installed in the same manner as
required in a given configuration B. Such components are painted (colored).
As building a path (4, B), a growing number of components will be colored.

Bearing in mind the need to minimize the number of moves, note that when
k > n, each disk can be moved to its desired location at most in two moves.
Therefore, each component of the label A in the path (A, B) can be changed
at most two times.

2. The exact estimation of the minimal distance
between vertices of S(k,n) for k >3 and n < k

Theorem. For a graph H(k,n) with £ > 3 and n < k, the minimal distance
between the vertices with arbitrary labels A and B in the path (A, B) is
equal to

d(A, B) = 2(n — ng) — 1, (1)

where n is the number of components in A, ng the number of invariable com-
ponents, nq the number of components which are variable one-off.
Proof. The proof is carried out by induction with respect to n.

1. For n = 1 we have one variable component and two cases:

la) Our component is variable one-off.

It is clear that d(A, B) = 1. On the other hand, n; =1, ng = 0 and from
our formula we have d(A,B) =2%1—1=1.

1b) Our component does not change.
Then d(A, B) = 0. On the other hand, n; =0, ng =1 and from our formula
we have d(A,B) =2%(1—-1)—-0=0.

2. Our induction hypothesis for the parameter n = m is

d(A™,B™) = 2(m —mg') —m}"

3. For n = m 4 1 we have three cases:

3a) The new component does not change.
Then my"t = m@ + 1, m7"™ = mP, and d(A™+, B™+) = d(A™, B™) + 0
= dA™,B™) = 2(m — m{) —m" = 2(m —m{ +1—-1) —m" =
=2((m+1) — (mZ +1)) —mP* =2((m + 1) —m*) — mP+

3b) The new component is variable one-off.
Then m"™ = mP +1, m*' = m, and d(A™!, B™l) = d(A™, B™)+1
=2m—mg") —m"+1=2(m—my") —m"+1+2—-2=2((m+1) —mg")
—(mP+1) =2((m+ 1) —md) —mpth

3c) The new component is variable twice.

Finding the shortest path between vertices in a graph Hanoi 125

Then m"tt = mP, m{™ =m, and d(A™+, B™H) = d(A™,B™) +2 =
=2(m—mJ) —mP+2 = 2((m+1)—m) —mP = 2((m+1)—mJ) —mP .
Our statement is true for all possible cases.

Remark. This result allows us to prove the minimal feature of the path
(A, B) built by our algorithm.

3. Sets of invariable components of the label A
being variable one-off or invariable

The first step in the process of finding the shortest path (A4, B) is to build the
set of invariable components in the label A.

Algorithm 1.
Source data: A = ajas...a,, B ="b1by...b,, where [a;],[b;] € {1,... ,k},
k> n.
Output data: Z — the set of invariable components in the label A.

1. The set of colored components Z = (), the set of analyzed components
M=0. i:=1.

2. If i =n+1, then go to step 5. Otherwise, we go (from left to right) and
compare a; with b; (only no painted).

Ifa; € M ora; € Z, then ¢ := i+ 1 and go to step 2.

If [a;] # [bi], then M :={a;} UM, i:=i+ 1 and go to step 2.

If [a;] = [bi], then j =i, and go to step 3.

3. We compare b; with b; (only no painted), where j < 4. If [b;] = [b;],
then ¢ := ¢+ 1 and go to step 2.

If [b]] 7& [bjfl] and [bj] 75 [bjfz] and ... and [b]] 7& [bl], we compare a; with
a; (only no painted), where j < i.

If [aj] # [aj—1] and [a;] # [a;—2] and ... and [a;] # [a1], then Z := {a;}UZ,
M :={a;j} UM and go to step 4.

If [bj] = [bj—1] or [b;] = [bj—2] or ... or [b] = [b1], or [a;] = [a;—1] or
laj] = [aj—2] or ... or [a;] = [a1], then M := {a;} UM, i:=1i+ 1 and go to
step 2.

4. We have s:=j+1. If s > n, then ¢ := ¢+ 1 and go to step 2.

Otherwise, we compare [a;] with [as], where s =7+ 1,5 +2,... ,n.

If [a;] # [as], go to step 4.

If s is such that [a;] = [as], where j < s < n, we compare [a,] with [b].

If [as] # [bs], then M :={as} UM, i:=i+ 1 and go to step 2.

If [as] = [bs], then j = s and go to step 3.

126 Sergey Novikov

5. Stop. All the elements of the set Z are painted components.

Each component of the label A in the path (A, B) can be changed at most
two times. Elements of Z are invariable components in the label A.

The following algorithm (A2) creates the set V'1 of components of A which
are variable one-off. The algorithm A2 is based on verification of properties
to be satisfied by elements from V1.

Properties of components to create the set V1:

Jai([ai] = p) AYI(G <i)(laj] # p) = (a; € V1)
[

)
2) 3bi([bs] = @) AVI(G < i) ([bj] # q) = (ai € V1)
3) Jai([as] # [bi]) A (bim1 € Z) = (a; € V1)
4) 3ai(la;] = p = [bi]) A3 <i)([a;] = p)(bj—1 € V1) = (a; € V1)
5) Jai([ai] = p) AFj(G <i)(las] = p) A ([bi] = ¢ # p)([bj] = @) = (ai ¢ V1)
6) Jai([ai] =p) AFj(G <i)(las] = p) A ([bi] = p)([bj] # p) = (ai ¢ V1)
7) Jai([ai] = p = [bs]) AFj(G < i)([az] # p)(bs] = p) = (a; ¢ V1)
In these propetries we assume the values p,q € {1,2,... ,k}.

We use the algorithm A2 for the proof of the minimal feature of the path
which ia created by the following algorithm A3.

4. An algorithm for finding of the shortest path
between the labels A and B

The next step in our process of finding the shortest path between vertices with
labels A and B is to construct a sequence of vertices labeled
Ag= A, A1, As, ... , Ay, = B. The labels A; and A; 11 have only one different
element from n components.

To store intermediate data in the following algorithm A3, we use a stack
structure with the LIFO maintenance order.

When we transfer the disks, we use free pegs. In the relevant operations
on labels the so-called free number should be used. We should have enough
free numbers, temporarily used in the construction of paths.

Algorithm 3.
Source data: The vertices labeled A = aqas...a, and B = biby...b,,

where [a;],[bi] € {1,... ,k},k > n; a set Z; a set of numbers W # {); a stack
S =0.

Output data: The shortest path (A, B) = Ag = A, A1, Ay, ... Ay =

1. A=ajas...an, B=0bby...b,, Z, W # 0, astack S =0, A AO,

m=20,1t:=n.

Finding the shortest path between vertices in a graph Hanoi 127

2. If i = 0, then go to step 5. Otherwise, we go from right to left in A,,.
If a; € Z, then i := i — 1 and go to step 2.

Otherwise, we compare [a;] and [b;].

The following three situations are possible.

If Vbi(b; ¢ Z)35(5 <)([bi] # 1) and Vai(a; ¢ Z)3j(j < 1)([a;] # [a;]) and
Va;(a; # 1), then we change the value of the component a; and have [a;] = [.

We have a new label A,,11, a new set W and Z := Z U {ai}. We change
1:=1— 1 and go to step 2.

22, [a;] = q,[bi] =L, g # L
To the left of the component a; = a;1, we have the components a;2, a;3, ... , a;s
such that [a;0] = [ai3] = ... = [ais] = ¢, and to the left of the component
bl' = bila we have the components big, big, . ,bit such that [bz2] = [blg] =...=
[bit] = L.

In this case, we change the content of components a; = a;1, a2, . .. , aj(s—1)
twice. The exception is made for the component a;s, which content we
shall change one-off later. First, we change the content of each component
a; = i1, @i2, - ,0i(s—1) ON & free number w € W. Thereafter, we write it
down a; = a;1, a2, ... ,a;s—1) to a stack S and create new labels. Later we
change the set W := W' and go to step 4.

Then [a;] = Ix € W. Thereafter, we create a new label A, 1, a new W and
modernize a stack S. Then j = ¢ and go to step 3.

3. j:==7—1. 1If j =0, then ¢ := ¢ —1 and go to step 4.

Otherwise, we analyze a;.

If [a;] = [a;] = I, we compare [a;] and [b;].

If [a;] = [bj] =, then [a;] =[x € W, we create a new label A,,; and new
sets W, S.

If [a;] # [a;] = [, we compare [b;] and [a;]. If [b;] # [a;], go to step 3.

If [bj] = [ad], then S := {a;} U S and go to step 3.

4. If S =0, then 7 := 7 — 1 and go to step 2.

We analyze the next element from the stack S.

Our actions are similar to those in step 2.

We have new labels and new elements for S, Z, W.

Thereafter, S := S — {ax} and go to step 4.

5. If | Z |=n, go to step 6. Otherwise, ¢ := ¢ — 1 and go to step 2.

6. Stop. We have the shortest path (A4, B) :
A=Ay — A — Ay —...— A, =B.

128 Sergey Novikov

Example. Let us build the shortest path between vertices with labels A and
B in the graph S(10,9) with 107 vertices.

1. A=1013129943,B=812124443,5=0, W = {5,6,7,8}, Z = {as, as}.

2. i =9. We analyze ag. We have [ag] = [bg] = 3 and [a3] = 3. We should change
this component by a free number [ag] = 5. Then A; =1013129945, W = {6,7,8},
S = (ag), Z ={az,as}.

3. We analyze a3, because [a3] = [ag] = 3. We cannot change [as] = 2, because
[a5] = 2, S = (a3,a9).

4. We analyze the element a3 from the stack S. We cannot change [a3] = 2,
because [as] = 2. We cannot change [a5] = 2, because [b3] = 2. We have Ay =

1013169945 W ={7,8}, S = (as,a9), Z = {az,a4}.

We analyze the element az once again. We can change [a3] = 2 and have A3 =
1012169945, W ={3,7,8}, S = (as,a9), Z = {as,as,as}.

We analyze the element as from the stack S and have A4 = 1012129945,
W = {3,6, 7,8}, S = (ag), Z = {ag,a3,a4,a5}.

We analyze the element ag from the stack S and have As; = 1012129943,
W = {5765 778}7 S = ()7 Z = {a27a37a47a57a9}'

2. We analyze as. As [ag] = [bs] = 4, we should change this component on a free
number [ag] = 5. Then Ag = 1012129953, W = {6,7,8}, S = (as),

Z - {G/Q) as, a4, as, ag}'

3. We have [bg] = 4 and S = (ag, ar, ag).

4. We cannot change [ag] = 4, because [a7] = 9. We should change [a7] = 6.
Then S = (a7,a8) and A7 = 1012129653, W = {7,8}, S = (a7,a8), Z =
{az, a3, a4, as,a9}. Thereafter, we can change [ag] = 4. Then Ag = 1012124653,
Ag=1012124453,A10 = 1012124443, Ay, =812124443, W = {5,6,7,9, 10},
S = @, Z = {alv a2, as, a4, as, ae, 7, ag, (19}.

5. | Z|=9.d(A,B) =11.

From our estimation (1) with ng = 2 and n; = 3, the minimal distance be-
tween vertices with labels A and B for our example should be equal to d(A, B) =
= 2(9 — 2) — 3 = 11. With the help of the algorithm A3 we have built the path with
the length 11. So the constructed path is the shortest one.

References
[1] P.K. Stockmeyer. The Tower of Hanoi: A Bibliography, September 2005.

http://www.cs.win.edu/ pkstoc/biblio2.pdf

[2] S. Novikov. About shortest paths between nodes of the graph Hanoi. Scientific
Issues, Catholic University in Rufomberok, Mathematica, 1T, 51-58, 2009.

[3] A. Hinz. Shortest paths between regular states of the Tower of Hanoi. Infor-
mation Sciences, 63, 173-181, 1992.

