PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New algorithm for first order stiff initial value problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we consider the development and implementation of algorithms for the solution of stiff first order initial value problems. Method of interpolation and collocation of basis function to give system of nonlinear equations which is solved for the unknown parameters to give a continuous scheme that is evaluated at selected grid points to give discrete methods. The stability properties of the method is verified and numerical experiments show that the new method is efficient in handling stiff problems.
Rocznik
Tom
Strony
19--28
Opis fizyczny
Bibliogr. 20 poz., tab.
Twórcy
  • Department of Mathematics, Modibbo Adama University of Technology, Yola, Nigeria
  • Department of Mathematics, Modibbo Adama University of Technology, Yola, Nigeria
  • Department of Mathematics, Modibbo Adama University of Technology, Yola, Nigeria
Bibliografia
  • [1] Abhulimen C.E., Exponentially fitted third derivative three step method for numerical integration of stiff initial value problems, Applied Mathematics and Computation, 243(2014), 446-453.
  • [2] Abhulimen C.E., Omeike G.E., A sixth order exponentially fitted scheme for the numerical solution of systems of ordinary differential equations, Journal of Applied Mathematics & Bioinformatics, 1(1)(2011), 175-186.
  • [3] Abhulimen C.E., Otunta F.O., A class of exponentially fitting Numerical Integration of initial value problems in ODEs, Journal of Nigerian Mathematical Society, 28(2009), 13-28.
  • [4] Abhulimen C.E., Otunta F.O., A family of two step exponentially fitted multiderivative methods for the Numerical Integration of stiff IVPs on ODEs, International Journal of Numerical Mathematics (IJNM), 13(2007), 1-21.
  • [5] Abhulimen C.E., Otunta F.O., A new class of exponential fitting for initial value problems in ordinary differential equations, J. of Nig. Math. Soc., 28(2009), 13-28.
  • [6] Akinfenwa O.A., Jator S.N., Extended continuous block backward differentiation formula for stiff systems, Fasciculi Mathematici, 55(2015), 5-18. DOI:10.1515/fascmath-2015-0010.
  • [7] Berghe G.V., Meyer H.D., Daele M.V., Hecke T.V., Exponentially fitted Runge Kutta method, Journal of Computational and Applied Mathematics, 125(2000), 107-115.
  • [8] Carroll J., A matricial exponentially fitted scheme for the numerical solution of stiff initial value problems, Computers. Math. Applic., 26(4)(1993), 57-64.
  • [9] Cash J.R., On the exponentially fitting of composite, multiderivative linear multistep methods, SIAM J. Numer. Annal., 18(1981), 808-821.
  • [10] Cash J.R., On the integration of stiff systems of ordinary differential equations using extended backward differentiation formula, Numer. Anal., 3(1980), 235-246.
  • [11] Ehigie J.O., Okunuga S.A., Sofoluwe A.B., A class of exponentially fitted second derivative extended backward differentiation formula for solving stiff problems, Fasciculi Mathematici, 51(2013), 71-84.
  • [12] Enright W.H., Pryce J.D., Two fortran packages for assessing IV methods, Technical report 83(16), Department of Computer Science, University of Toronto, Canada, (1983).
  • [13] Ezzeddine A.K., Hojjati G., Hybrid extended backward differential formulas for stiff systems, International Journal of Nonlinear Science, 12(2)(2011), 196-204.
  • [14] Fengjian Y., Xinming C., Yiping L., High order one step A-stable exponentially fitted method, Appl. Math. J. Chiness Univ. Ser. B., 14(3)(1999), 357-365.
  • [15] Jackson L.W., Kenue S.K., A fourth order exponentially fitted method, SIAM J. Numer Annal., 11(1974), 965-978.
  • [16] Simon T.E., Exponentially-fitted Runge Kutta-Nystrom method for the numerical solution of initial value problems with oscillating solutions, Applied Mathematics Letters, 15(2002), 217-225.
  • [17] Xiao A., Zhang G., Yi X., Implicit-explicit multistep method for nonlinear stiff initial value problems, Applied Mathematics and Computations, 247(2014), 47-60.
  • [18] Yakubu D.G., Marcus S., The efficiency of second derivatives multistep methods for the numerical integration of stiff systems, Journal of Nigerian Mathematical Society, DOI:10.1016/j.nnms.2016.02.002.
  • [19] Yang Y., Fang Y., You X., Nang B., Novel exponentially fitted two derivative Runge Kutta methods with equation-dependent coefficient for first order differential equations, Discrete Dynamics in Nature and Society, DOI.org/10.1152/2016/9827952.
  • [20] Ying T.Y., Yaacob N., One step exponentially-rational method for the numerical solution of first order initial value problems, SIAM Malaysiana, 42(6)(2013), 845-853.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b55b975-0429-4e69-afb6-3f5fe6f1746f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.