PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of heat treatment on microhardness of electroless Ni-YSZ cermet coating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper discussed the effect of heat treatment on electroless nickel-yttria-stabilised zirconia (Ni-YSZ) cermet coating. Ni-YSZ cermet coating has potential applications such as cutting tools, thermal barriers, solid oxide fuel anode, and various others. The compatibility of ceramic YSZ and metallic nickel in terms of the mechanical properties such as hardness by varying the heating temperature, time and ceramic particle size is highlighted. Design/methodology/approach: Ni-YSZ cermet coating was deposited onto a highspeed steel substrate using the electroless nickel co-deposition method. The temperature and time were varied in a range of 300-400°C and 1-2 hours, respectively. The microhardness measurements were carried out using a Vickers microhardness tester (Shimadzu) according to ISO 6507-4. The surface characterisation of the cermet coating was carried out using JOEL Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray (EDX) JSM 7800F. The crystallographic structure of materials was analysed by X-ray diffraction (XRD) Bruker D8 Advance instrument. Findings: It was found that the microhardness of Ni-YSZ cermet coating with the ratio of 70:30, respectively, is directly proportional to the heating temperature and time. Heating the Ni-YSZ cermet coating at 300°C from room temperature (rtp) to 1 hour shows a 12% microhardness increment, while from 1 to 2 hours gives a 19% increment. Compared to heating at 350°C and 400°C, the increment is more significant at 33% and 49% for rtp to 1 hour and 8% and 16% for 1 to 2 hours, respectively. In addition, the effect of varying YSZ particle size in the Ni-YSZ cermet gave response differently for heating temperature and heating time. Research limitations/implications: The paper is only limited to the discussion of the heat treatment effect on Ni-YSZ cermet coating hardness property. The tribological effect will be in future work. Practical implications: The microhardness data may vary due to the Vickers microhardness force applied and the amount of ceramic particle incorporation and phosphorus content in the nickel matrix. Originality/value: The value of this work is the compatibility of the ceramic YSZ and metallic nickel matrix in terms of mechanical properties, such as hardness, upon heat treatment.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 28 poz., tys., tab., wykr.
Twórcy
  • Faculty of Engineering Technology, University College TATI (UC TATI), 24000 Kemaman, Terengganu, Malaysia
  • Faculty of Engineering Technology, University College TATI (UC TATI), 24000 Kemaman, Terengganu, Malaysia
  • School of Engineering, University of Edinburgh, Edinburgh EH8 9QT, Scotland, UK
autor
  • Faculty of Manufacturing Engineering, University Technology Malaysia, Skudai, Johor, Malaysia
Bibliografia
  • [1] B.W. Darvell, Steel and Cermet, in: B.W. Darvell (ed.), Woodhead Publishing Series in Biomaterials: Materials Science for Dentistry, 2018, Woodhead Publishing, Sawston, 540-554.
  • [2] A. Mubarak, E. Hamzah, M.R.M. Toff, Review of physical vapour deposition (PVD) techniques for hard coating, Jurnal Mekanikal 20 (2005) 42-51.
  • [3] P. Sampath Kumar, P. Kesavan Nair, Studies on crystallisation of electroless Ni-P deposits, Journal of Materials Processing Technology 56/1-4 (1996) 511-520. DOI: https://doi.org/10.1016/0924-0136(96)85110-7
  • [4] J. Baronins, M. Antonov, S. Bereznev, T. Raadik, I. Hussainova, Raman Spectroscopy for Reliability Assessment of Multilayered AlCrN Coating in Tribo-Corrosive Conditions, Coatings 8/7 (2018) 229. DOI: https://doi.org/10.3390/coatings8070229
  • [5] Q. You, J. Xiong, Z. Guo, J. Liu, T. Yang, C. Qin, Microstructure and properties of CVD coated Ti(C, N)-based cermets with varying WC additions, International Journal of Refractory Metals and Hard Materials 81 (2019) 299-306. DOI: https://doi.org/10.1016/j.ijrmhm.2019.02.027
  • [6] N.B. Baba, H.M.M. Sapie, Investigation on NiCrSiB Coating via HVOF Spraying, Advanced Science Letters 19/3 (2013) 981-984. DOI: https://doi.org/10.1166/asl.2013.4826
  • [7] V.V. Kulyk, B.D. Vasyliv, Z.A. Duriagina, T.M. Kovbasiuk, I.A. Lemishka, The effect of water vapor containing hydrogenous atmospheres on the microstructure and tendency to brittle fracture of anode materials of YSZ–NiO(Ni) system, Archives of Materials Science and Engineering 108/2 (2021) 49-67. DOI: https://doi.org/10.5604/01.3001.0015.0254
  • [8] A. Góral, W. Żórawski, M. Makrenek, S. Kowalski, Microstructure and properties of cold sprayed composite coatings, Journal of Achievements in Materials and Manufacturing Engineering 81/2 (2017) 49-55. DOI: https://doi.org/10.5604/01.3001.0010.2037
  • [9] M.S. Safavi, F.C. Walsh, Electrodeposited Co-P alloy and composite coatings: A review of progres towards replacement of conventional hard chromium deposits, Surface and Coatings Technology 422 (2021) 127564. DOI: https://doi.org/10.1016/j.surfcoat.2021.127564
  • [10] P. Jenczyk, H. Grzywacz, M. Milczarek, D.M. Jarząbek, Mechanical and Tribological Properties of Co-Electrodeposited Particulate-Reinforced Metal Matrix Composites: A Critical Review with Interfacial Aspects, Materials 14/12 (2021) 3181. DOI: https://doi.org/10.3390/ma14123181
  • [11] D. Ahmadkhaniha, F. Eriksson, C. Zanella, Optimising Heat Treatment for Electroplated NiP and NiP/SiC Coatings, Coatings 10/12 (2020) 1179. DOI: https://doi.org/10.3390/coatings10121179
  • [12] O.A. Glotka, Modelling the composition of carbides in nickel-based superalloys of directional crystallisation. Journal of Achievements in Materials and Manufacturing Engineering 102/1 (2020) 5-15. DOI: https://doi.org/10.5604/01.3001.0014.6324
  • [13] J. Sudagar, J. Lian, W. Sha, Electroless nickel, alloy, composite and nano coatings - A critical review, Journal of Alloys and Compounds 571 (2013) 183-204. DOI: https://doi.org/10.1016/j.jallcom.2013.03.107
  • [14] D. Ahmadkhaniha, C. Zanella, The Effects of Additives, Particles Load and Current Density on Codeposition of SiC Particles in NiP Nanocomposite Coatings. Coatings 9/9 (2019) 554. DOI: https://doi.org/10.3390/coatings9090554
  • [15] M. Trzaska, A. Mazurek, Nanocomposite Ni/diamond layers produced by the electrocrystallization method, Journal of Achievements in Materials and Manufacturing Engineering 75/1 (2016) 34-40. DOI: https://doi.org/10.5604/17348412.1228367
  • [16] N. Norsilawati, C.I.M. Fathil, N. Bahiyah Baba, S.N. Azinee, M.H. Ibrahim, Characterisation of Nickel-Cubic Boron Nitride Coating via Electroless Nickel Deposition on High Speed Steel and Carbide Substrates, Journal of Physics: Conference Series 1874 (2021) 012070. DOI: https://doi.org/10.1088/1742-6596/1874/1/012070
  • [17] N. Bahiyah Baba, A. Davidson, T. Muneer, YSZ-reinforced Ni-P deposit: An effective condition for high particle incorporation and porosity level, Advanced Materials Research 214 (2011) 412-417. DOI: https://doi.org/10.4028/www.scientific.net/AMR.214.412
  • [18] A. Ahmadi Ashtiani, S. Faraji, S. Amjad Iranagh, A.H. Faraji, The study of electroless Ni-P alloys with different complexing agents on Ck45 steel substrate, Arabian Journal of Chemistry 10/S2 (2017) S1541-S1545. DOI: https://doi.org/10.1016/j.arabjc.2013.05.015
  • [19] M. Buchtík, M. Krystýnová, J. Másilko, J. Wasserbauer, The Effect of Heat Treatment on Properties of Ni-P Coatings Deposited on a AZ91 Magnesium Alloy, Coatings 9/7 (2019) 461. DOI: https://doi.org/10.3390/coatings9070461
  • [20] K. Shahzad, E.M. Fayyad, M. Nawaz, O. Fayyaz, R.A. Shakoor, M.K. Hassan, M.A. Umer, M.N. Baig, A. Raza, A.M. Abdullah, Corrosion and Heat Treatment Study of Electroless NiP-Ti Nanocomposite Coatings Deposited on HSLA Steel, Nanomaterials 10/10 (2020) 1932. DOI: https://doi.org/10.3390/nano10101932
  • [21] J.T.W. Jappes, N.C. Brintha, M.A. Khan, Effect of Magnetic Field, Heat Treatment and Dry Wear Analysis on Electroless Nickel Deposits, Journal of Bio- and Tribo- Corrosion 7 (2021) 20. DOI: https://doi.org/10.1007/s40735-020-00434-y
  • [22] A.M. Abioye, S. Faraji, F.N. Ani, Effect of Heat Treatment on The Characteristics of Electroless Activated Carbon-Nickel Oxide Nanocomposites, Jurnal Teknologi 79/3-7 (2017) 61-67. DOI: https://doi.org/10.11113/jt.v79.11898
  • [23] K.U.V. Kiran, A. Arora, R. Sunil, R. Dumpala, Effect of heat treatment on the temperature dependent wear characteristics of electroless Ni–P–BN(h) composite coatings, SN Applied Sciences 2 (2020) 1101. DOI: https://doi.org/10.1007/s42452-020-2920-z
  • [24] S. Arulvel, D. Dsilva Winfred Rufuss, S.S. Sharma, A. Mitra, A. Elayaperumal, M.S. Jagatheeshwaran, A novel water quench approach for enhancing the surface characteristics of electroless nickel phos-phorous deposit, Surfaces and Interfaces 23 (2021) 100975. DOI: https://doi.org/10.1016/j.surfin.2021.100975
  • [25] A. Biswas, S.K. Das, P. Sahoo, Correlating tribological performance with phase transformation behavior for electroless Ni-(high)P coating, Surface and Coatings Technology 328 (2017) 102-114. DOI: https://doi.org/10.1016/j.surfcoat.2017.08.043
  • [26] N.B. Baba, YSZ Reinforced Ni-P composite by Electroless Nickel co-deposition, in Composites and Their Properties, in N. Hu (ed.), Composites and Their Properties, IntechOpen, London, 2012, 457-482. DOI: http://dx.doi.org/10.5772/46496
  • [27] N.B. Khosroshahi, R.A. Khosroshahi, R.T. Mousavian, D. Brabazon, Effect of electroless coating parameters and ceramic particle size on fabrication of a uniform Ni-P coating on SiC particles, Ceramics International 40/8/A (2014) 12149-12159. DOI: https://doi.org/10.1016/j.ceramint.2014.04.055
  • [28] J.N. Balaraju, Kalavati, K.S. Rajam, Influence of particle size on the microstructure, hardness and corrosion resistance of electroless Ni-P-Al2O 3 composite coatings, Surface and Coatings Technology 200/12-13 (2006) 3933-3941. DOI: https://doi.org/10.1016/j.surfcoat.2005.03.007
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b50c1e2-a4f6-4f93-99ff-f0240c36fd51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.