PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A soft-computing based approach towards automatic detection of pulmonary nodule

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Early detection of lung cancer is the major challenge for physicians to treat and control this deadly disease whose primary step is to detect pulmonary nodule from thoracic computed tomography (CT) images. In view of increasing the accuracy of the pulmonary nodule detection methodology, this paper proposes a novel technique that can aid early diagnosis of the patients. The study has considered high resolution computed tomography (HRCT) images from two public datasets LIDC and Lung-TIME and an independent dataset, created in collaboration between Peerless Hospital Kolkata and University of Calcutta. The key feature of the test dataset is that the class features are imbalanced in nature. The structures associated with lung parenchyma are segmented using parameterized multi-level thresholding technique, grayscale morphology, and rolling ball algorithm. Then random under sampling is implemented to overcome the imbalance class problem, followed by a feature selection methodology using binary particle swarm optimization (BPSO). The nodule and non-nodule classification are performed by implementing ensemble stacking. Indeed, it has been observed that there exists insufficient published literature that has been considered similar looking pulmonary abnormalities as non-nodule objects as well as imbalance class problem and feature selection algorithm to design an automated, accurate and robust model for automated detection of the pulmonary nodule. In reference to the LIDC dataset, the false positive, false negative detection rates and sensitivity are 1.01/scan, 0.56/scan and 99.01% respectively, which is an improvement in terms of accuracy as compared to the existing state-of-the-art research works.
Twórcy
  • A.K. Choudhury School of Information Technology, University of Calcutta, Kolkata, India
  • Peerless Hospitex Hospital, Kolkata, India
  • A.K. Choudhury School of Information Technology, University of Calcutta, Kolkata, India
autor
  • Peerless Hospitex Hospital, Kolkata, India
Bibliografia
  • [1] Cancer facts and figure. globocan.iarc.fr/Default.aspx.
  • [2] Cascio D, Magro R, Fauci F, Iacomi M, Raso G. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Comput Biol Med 2012;42(11):1098–109.
  • [3] Badura P, Pietka E. Soft computing approach to 3D lung nodule segmentation in CT. Comput Biol Med 2014;53:230–43.
  • [4] Messay T, Hardie RC, Rogers SK. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 2010;14(3):390–406.
  • [5] Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, Oudkerk M, et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 2015;26(1):195–202.
  • [6] ur Rehman MZ, Javaid M, Shah SIA, Gilani SO, Jamil M, Butt SI. An appraisal of nodules detection techniques for lung cancer in CT images. Biomed Signal Process Control 2018;41:140–51.
  • [7] Moghaddam AE, Akbarizadeh G, Kaabi H. Automatic detection and segmentation of blood vessels and pulmonary nodules based on a line tracking method and generalized linear regression model. Signal Image Video Processing 2019;13(3):457–64.
  • [8] Shi Z, Hao H, Zhao M, Feng Y, He L, Wang Y, et al. A deep CNN based transfer learning method for false positive reduction. Multimed Tools Appl 2019;78(1):1017–33.
  • [9] Saien S, Pilevar AH, Moghaddam HA. Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels. Comput Biol Med 2014;54:188–98.
  • [10] de Carvalho Filho AO, de Sampaio WB, Silva AC, de Paiva AC, Nunes RA, Gattass M. Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artif Intell Med 2014;60(3):165–77.
  • [11] Netto SMB, Silva AC, Nunes RA, Gattass M. Automatic segmentation of lung nodules with growing neural gas and support vector machine. Comput Biol Med 2012;42 (11):1110–21.
  • [12] Zhou S, Cheng Y, Tamura S. Automated lung segmentation and smoothing techniques for inclusion of juxtapleural nodules and pulmonary vessels on chest CT images. Biomed Signal Process Control 2014;13:62–70.
  • [13] Liu J-k, Jiang H-y, He C-g, Wang Y, Wang P, Ma H, et al. An assisted diagnosis system for detection of early pulmonary nodule in computed tomography images. J Med Syst 2017;41 (2):30.
  • [14] Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016;35(5):1160–9.
  • [15] Bouchard G. Efficient bounds for the softmax function, applications to inference in hybrid models; 2007.
  • [16] Suárez-Cuenca JJ, Guo W, Li Q. Integration of multiple classifiers for computerized detection of lung nodules in CT. Biomed Eng: Appl Basis Commun 2015;27(4):1550040.
  • [17] Froz BR, de Carvalho Filho AO, Silva AC, de Paiva AC, Nunes RA, Gattass M. Lung nodule classification using artificial crawlers, directional texture and support vector machine. Expert Syst Appl 2017;69:176–88.
  • [18] Narayanan BN, Hardie RC, Kebede TM. Performance analysis of feature selection techniques for support vector machine and its application for lung nodule detection. NAECON 2018-IEEE national aerospace and electronics conference. IEEE; 2018. p. 262–6.
  • [19] Swash Thoracic Image Dataset. http://cu-coe.in.
  • [20] Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 2011;38(2):915–31.
  • [21] Dolejsi M, Kybic J, Polovincak M, Tuma S. The lung time: annotated lung nodule dataset and nodule detection framework. SPIE Medical Imaging. International Society for Optics and Photonics; 2009. p. 72601U.
  • [22] World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ 2001;79(4):373.
  • [23] Mukherjee Jhilam, Poddar Triparna, Kar Madhuchanda, Ganguli Bhaswati, Chakrabarti Amlan. An automated classification methodology of sub-centimeter pulmonary structures in computed tomography images. Computers and Electrical Engineering, Volume 84. Elsevier; 2020. p. 106629. June.
  • [24] Elhance D. Fundamentals of statistics. Allahabad: Kitab Mahal; 1957.
  • [25] Gonzalez RC, Woods RE, Eddins SL. Digital image processing using MATLAB®. Gatesmark Publishing; 2009.
  • [26] Jain S, Pise N, et al. Computer aided melanoma skin cancer detection using image processing. Procedia Comput Sci 2015;48:735–40.
  • [27] Grubbström RW, Tang O. The moments and central moments of a compound distribution. Eur J Oper Res 2006;170(1):106–19.
  • [28] Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans Syst Man Cybern 1973; (6):610–21.
  • [29] Kim JK, Park HW. Statistical textural features for detection of microcalcifications in digitized mammograms. IEEE Trans Med Imaging 1999;18(3):231–8.
  • [30] Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process 1975;4(2):172–9.
  • [31] Peikert T, Duan F, Rajagopalan S, Karwoski RA, Clay R, Robb RA, et al. Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial. PLoS One 2018;13(5):e0196910.
  • [32] Vieira SM, Mendonça LF, Farinha GJ, Sousa JM. Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl Soft Comput 2013;13(8):3494–504.
  • [33] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS'95. IEEE; 1995. p. 39–43.
  • [34] Dietterich TG. Ensemble methods in machine learning. International workshop on multiple classifier systems. Springer; 2000. p. 1–15.
  • [35] Kohavi R. Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid. Kdd, vol. 96. Citeseer; 1996. p. 202–7.
  • [36] Soucy P, Mineau GW. A simple KNN algorithm for text categorization. Proceedings 2001 IEEE international conference on data mining. IEEE; 2001. p. 647–8.
  • [37] Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011;2(3):27.
  • [38] Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 1999;9(3):293–300.
  • [39] Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M. Logistic regression. Springer; 2002.
  • [40] Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat 1951;22(1):79–86.
  • [41] He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng 2009;21(9):1263–84.
  • [42] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote: synthetic minority over-sampling technique. J Artif Intell Res 2002;16:321–57.
  • [43] He H, Bai Y, Garcia EA, Li S. ADASYN: adaptive synthetic sampling approach for imbalanced learning. IEEE international joint conference on neural networks, 2008, IJCNN 2008. IEEE World Congress on Computational Intelligence. IEEE; 2008. p. 1322–8.
  • [44] Yan K, Zhang D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens Actuators B: Chem 2015;212:353–63.
  • [45] Li Z, Zhou X, Dai Z, Zou X. Classification of G-protein coupled receptors based on support vector machine with maximum relevance minimum redundancy and genetic algorithm. BMC Bioinform 2010;11(1):325.
  • [46] Saien S, Moghaddam HA, Fathian M. A unified methodology based on sparse field level sets and boosting algorithms for false positives reduction in lung nodules detection. Int J Comput Assist Radiol Surg 2018;13(3):397–409.
  • [47] Narayanan BN, Hardie RC, Kebede TM, Sprague MJ. Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities. Pattern Anal Appl 2019;22(2):559–71.
  • [48] Xie H, Yang D, Sun N, Chen Z, Zhang Y. Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognit 2019;85:109–19.
  • [49] Liao F, Liang M, Li Z, Hu X, Song S. Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-or network. IEEE Trans Neural Netw Learn Syst 2019;30 (11):3484–95.
  • [50] da Silva GLF, Valente TLA, Silva AC, de Paiva AC, Gattass M. Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Computer Methods Prog Biomed 2018;162:109–18.
  • [51] Kim B-C, Yoon JS, Choi J-S, Suk H-I. Multi-scale gradual integration CNN for false positive reduction in pulmonary nodule detection. Neural Netw 2019;115:1–10.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b4690ee-8017-4c1a-b115-2b7a3d787280
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.