PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Selected Chemical Properties of Fibres from Different Breeds of Dogs and German Blackface Sheep

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Porównanie wybranych właściwości chemicznych włókien różnych ras psów oraz niemieckich owiec czarnogłówek
Języki publikacji
EN
Abstrakty
EN
Combed or picked out dog hair fibre, as one of the protein fibres, could be used in yarn manufacturing. Dog hair fibres have a specific scale structure, shape and distribution on the surface. Results obtained indicated that same dog hair fibre fragmented and interrupted the continuous whole and continuous kemp medulla inside. Thus it is necessary to find differences between sheep wool and dog hair fibres as well as between different dog breeds in other areas. In this research, the crystal and chemical structures, macro-chain confirmation and surface morphology of sheep wool and dog hair fibres from different breeds were investigated through identifying variations between thus protein fibres. FTIR analysis showed that the absorbing peaks of sheep’s wool around 2920 cm–1 and 2850 cm–1 are more intense and sharper than those in the IR spectrum of dog hair fibre. Other peaks of the dog hair spectra are more intensive and have a bigger areal. Values of the crystallinity degree and indexes are different not only between sheep wool and dog hair fibres, but also among hairs of the different dog breeds too. The percentage amounts of carbon, hydrogen and nitrogen in sheep wool and dog hair fibres are of the same order of magnitude. However, the content of elements in the cortex of sheep wool and dog hair fibres varies, especially that of sulphur and oxygen, which varies by about two times among the different protein fibres.
PL
Do produkcji przędz włókien proteinowych można stosować włókna z wyczesanych sierści psów. Uzyskane wyniki wskazują, że włókna z sierści niektórych psów mogą przedstawiać interesujące właściwości dla produkcji odzieży. Dlatego postanowiono przeprowadzić porównanie strukturalne i morfologiczne włókien z wełny owczej i różnych ras psów dla identyfikacji różnic. Badania FTIR wykazały, że piki absorpcji promieniowania w zakresie 2920 cm-1 i 2850 cm-1 są bardziej intensywne, mają ostrzejszy przebieg dla wełny owczej podczas gdy dla innych częstotliwości piki mają charakter zróżnicowany. Wartości stopnia krystaliczności są różne nie tylko dla wełny owczej i psiej ale również są zróżnicowane pomiędzy wełną z różnych ras psich. Procentowe zawartości węgla, wodoru i azotu w poszczególnych rodzajach włókien są podobne, podczas gdy różnice zawartości siarki i tlenu są wyraźne.
Rocznik
Strony
21--28
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Materials Engineering, Kaunas University of Technology, Kaunas, Lithuania
  • Department of Materials Engineering, Kaunas University of Technology, Kaunas, Lithuania
  • Department of Materials Engineering, Kaunas University of Technology, Kaunas, Lithuania
  • Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
Bibliografia
  • 1. Wojciechowska E, Pielesz A and Wlochowicz A. Effect of External Lipids on the Process of Wool Yellowing. Text. Res. J. 1992; 62: 580–585.
  • 2. Vasconcelos A, Freddi G and Cavaco- Paulo A. Biodegradable Materials Based on Silk Fibroin and Keratin. Biomacromolecules 2008; 9: 1299–1305.
  • 3. Eslahi N, Dadashian F and Nejad NH. An Investigation on Keratin Extraction from Wool and Feather Waste by Enzymatic Hydrolysis. Preparative Biochemistry and Biotechnology 2013; 43(7): 624–648. DOI:10.1080/10826068.2013 .763826
  • 4. Deng C, Wang L and Wang X. Diameter variations of irregular fibers under different tensions. Fibers and Polymers 2007; 8: 642–648.
  • 5. Kuhn R and Meyer WA. Note on the Specific Cuticle Structure of Wool Hairs Otters (Lutrinae). Zoological Science 2010; 27: 826–829.
  • 6. Kotlinska A and Lipp-Simonowicz B. Research on the Enzymatic Treatment of Wool Fibres and Changes in Selected Properties of Wool. Fibres and Textiles in Eastern Europe 2011; 19, 3(86): 88– 93.
  • 7. Blackburn RS. Biodegradable and sustainable fibres. Cambridge England: Woodhead Publishing Limited, 2005, p. 456.
  • 8. Czaplicki Z and Ruszkowski K. Optimization of Scouring Alpaca Wool by Ultrasonic Technique. Journal of Natural Fibers 2014; 11: 169–183.
  • 9. Kan CW and Yuen CWA. A comparative study of wool fibre surface modified by physical and chemical methods. Fibers and Polymers 2009; 10: 681–686.
  • 10. Čepaitienė A. Ethnology of Lithuania (in Lithunian). Vilnius: Publishing Diemedis, 2001.
  • 11. Green JS. Evaluation of Non-Traditional Animal Fibres for Use in Textile Products. PhD Thesis, University of North Carolina State, USA, 2003.
  • 12. Ragaišienė A and Rusinavičiūtė J. Comperative Investigation of Mechanical Indices of Sheep’s Wool and Dog Hair Fibre, Fibres and Textiles in Eastern Europe 2012; 20, 6A(95): 43–47.
  • 13. Wojciechowska E, Wlochowicz A and Weselucha-Birczyna A. Application of Fourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin. Journal of Molecular Structure 1999; 511–512: 307–318.
  • 14. IWTO Standard Test Method IWT0-12-95, Measurement of the Mean and Distribution of Fibre Diameter using the Sirolan-Laserscan Fibre Diameter Analyser.
  • 15. Niu M, Liu XG, Dai JM, Hou WS, Wei LQ and Xu BS. Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials. Spectrochim. Acta Part. A 2012; 86: 289–293.
  • 16. Long JJ, Cui ChL, Wang L, Xu HM, Yu ZJ and Bi XP. Effect of treatment pressure on wool fiber in supercritical carbon dioxide fluid. Journal of Cleaner Production 2013; 43: 52–58.
  • 17. SirolanTM Laserscan/ A New Technology for a New Millennium, 1999; 1–24.
  • 18. Buika G, Getautis V, Martynaitis V and Rutkauskas K. Spectroscopy of organic compounds. Kaunas: Vitae Litera, 2007, p. 277 (in Lithuanian).
  • 19. Stuart BH. Infrared spectroscopy: fundamentals and applications, Sydney: John Wiley&Sons, 2004. p. 71–81.
  • 20. Kong J and Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Bioch. Bioph. Sin. 2007; 39: 549–559.
  • 21. Krimm S and Bandekar J. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. Advance of Protein Chemistry 1986; 38: 181-364.
  • 22. Aluigi A, Zoccola M, Vineis C, Tonin C, Ferrero F and Canetti M. Study on the structure and properties of wool keratinnregenerated from formic acid. InternationalnJournal of Biological Macromoleculesn2007; 4: 266–273.
  • 23. Wojciechowska E, Rom M, WłochowicznA, Wysocki M and Wesełucha-nBirczynska A. The use of Fourierntransform-infrared (FTIR) and Ramannspectroscopy (FTR) for the investigationnof structural changes in wool fibrenkeratin after enzymatic treatment. Journalnof Molecular Structure 2004; 704:n315–321.
  • 24. Espinoza EO, Baker BW and Moores TD, et al. Forensic identification of elephant and giraffe hair artifacts using HATR FTIR spectroscopy and discriminant analysis. Endangered Species Research 2008; 9: 239–246.
  • 25. Fonollosa J, Campos L, Mart´l M, de la Maza A, Parra JL and Coderch L. X-ray diffraction analysis of internal wool lipids Chem. Phys. Lipids 2004; 130: 159–166.
  • 26. Aluig A, Zoccola M, Vineis C, Tonin C, Ferrero F and Canetti M. Study on the structure and properties of wool keratin regenerated from formic acid. Int. J. Biol. Macromol. 2007; 41: 266–273.
  • 27. Nishikawa N, Tanizawa NY, Tanaka S, Horiguchi Y and Asakura T. Structural change of keratin protein in human hair by permanent waving treatmen. Polymer 1998; 39: 3835–3840.
  • 28. Xu WL, Ke GZ, Wu JH and Wang XG. Modification of wool fiber using steam explosion. Eur. Polym. J., 2006; 42: 2168–2173.
  • 29. Cao JN. Is the α–β transition of keratin a transition of α-helices to β-pleated sheets? Part I. In situ XRD studies. J. Mol. Struct. 2000; 553: 101–107.
  • 30. Feughelman M, Lyman DJ and Willis BK. The parallel helices of the intermediate filaments of α-keratin. Int. J. Biol. Macromol. 2002; 30: 95–96.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b463d4c-ac6f-4ec1-98d6-9153d71c2a59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.