PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Relative Humidity on Tribological and Mechanical Properties of PA6-Based Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article examines how relative humidity affects the wear resistance and mechanical properties of PA6, PA6 GF30, and Onyx, processed by 3D printing. Findings show that mass loss rises with humidity across all materials, with Onyx exhibiting the lowest average mass loss despite larger percentage increases. At pressure value of 0.32 N·mm-2, mass loss increased due to their properties compared to metallic materials by 2.4% from 33% to 65% humidity, then by 10.5% from 65% to 97%. Notably, at high humidity, there were significant differences in wear loss between parallel and vertical orientations, with Onyx showing a 36% difference at 97% humidity. Tensile tests revealed a strong correlation between humidity and tensile strength in PA6 of 0.9331 correlation coefficient value, while PA6 GF30 showed inconsistent properties. For Onyx, higher humidity led to substantial drops in tensile strength (0.911 correlation coefficient value) and increases in elongation (0.603 correlation coefficient value). The contribution of this study lies in its ability to guide the selection of composite materials, for wet and abrasive conditions, optimizing wear resistance and extending component lifespan while reducing maintenance needs.
Wydawca
Rocznik
Tom
Strony
362--370
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Slovak University of Agriculture in Nitra Faculty of Engineering Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
autor
  • Slovak University of Agriculture in Nitra Faculty of Engineering Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
  • Slovak University of Agriculture in Nitra Faculty of Engineering Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
  • Slovak University of Agriculture in Nitra Faculty of Engineering Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
  • VSB - Technical University of Ostrava Faculty of Mechanical Engineering 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
  • VSB - Technical University of Ostrava Faculty of Mechanical Engineering 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
Bibliografia
  • [1] Çetin, M.E., Tatar, A.C., Demir, O., Önal, G. and Avcı, A, “Effects of cryogenic and warm temperatures on quasi-static penetration resistance of carbon-aramid hybrid nanocomposites reinforced using halloysite nanotubes,” Mechanics of Materials, vol. 155, 2021 https://doi.org/10.1016/j.mechmat.2021.103780.
  • [2] Bertagna, S., Braidotti, L., Laurini, E., Marinò, A., Pricl, S., & Bucci, V, “Thermoplastic Materials for the Metal Replacement of Non-Structural Components in Marine Engines,” Applied Sciences, vol. 12, 2022. https://doi.org/10.3390/app12178766.
  • [3] Çetin, M.E., “The effect of carbon nanotubes modified polyurethane adhesive on the impact behavior of sandwich structures,” Polymer Composites, vol. 42 (9), 2021, pp. 4353-4365. https://doi.org/10.1002/pc.26153.
  • [4] Farfan-Cabrera, I.L., Gaspar, T.M, González, P.J., “Tribology of polymer matrix composites within the automotive industry,” Encyclopedia of Materials: Composites, vol. 1, 2021, pp. 970-982. https://doi.org/10.1016/B978-0-12-819724-0.00029-X.
  • [5] Pogačnik, A., Kupec, A. and Kalin, M, “Tribological properties of polyamide (PA6) in self-mated contacts and against steel as a stationary and moving body,” Wear, vol. 378-379, 2017, pp. 17-26. https://doi.org/10.1016/j.wear.2017.01.118.
  • [6] Kar, K.K. and Pramanik, S. Hydroxyapatite poly(ether-etherketone) nanocomposites and method of manufacturing same. U.S. Patent, 2014, No. 8652373 B2.
  • [7] Fathi, R., Ma, A., Saleh, B., Xu, Q. and Jiang, J., “Investigation on mechanical properties and wear performance of functionally graded AZ91-SiCp composites via centrifugal casting,” Materials Today Communications, vol 24. 2020, pp. 101169. https://doi.org/10.1016/j.mtcomm.2020.101169
  • [8] Kumar, S. and Panneerselvam, K., “Two-body abrasive wear behavior of nylon 6 and glass fiber reinforced (GFR) nylon 6 composite,” Procedia Technology, vol. 25, 2016 pp. 1129-1136. https://doi.org/10.1016/j.protcy.2016.08.228.
  • [9] Kumar, R., Mishra, S.K., Raj, U., Sengupta, S., Chatterjee, R., Pandey, S., Mozammil Hasnain, S.M., Ragab, A.E., Dei-falla, A.F. and Jayapalan, S., “Influence of graphene nanoplatelets (GnPs) and titanium dioxide (TiO₂) hybrid fillers on the mechanical, thermal, and morphological performance of polypropylene (PP) based hybrid composites,” Polymers and Polymer Composites, vol. 32, 2024. https://doi.org/10.1177/09673911241260.
  • [10] Monson, L., Braunwarth, M. and Extrand, C., “Moisture absorption by various polyamides and their associated dimensional changes,” Journal of Applied Polymer Science, vol. 107 (1), 2008, pp. 355-363. https://doi.org/10.1002/app.27057.
  • [11] Deopura, B.L., Alagirusamy, R., Joshi, M. and Gupta, B. (eds) (2008) Polyesters and Polyamides. Woodhead Publishing.
  • [12] Broudin, M., Le Gac, P.Y., Le Saux, V., Champy, C., Robert, G., Charrier, P. and Marco, Y., “Water diffusivity in PA66: Experimental characterization and modeling based on free volume theory,” European Polymer Journal, vol. 67, 2015, pp. 326-334. https://doi.org/10.1016/j.eurpolymj.2015.04.015.
  • [13] Gautier, L., Mortaigne, B. and Bellenger, V., “Interface damage study of hydrothermally aged glass-fibre-reinforced polyester composites,” Composites Science and Technology, vol. 59(16), 1999, pp. 2329-2337. doi: 10.1016/S0266-3538(99)00085-8.
  • [14] Ma, T., Zhang, Y., Ruan, K., Guo, H., He, M., Shi, X., Guo, Y., Kong, J., Gu, J., “ Advance in 3D printing for polymer composites: A review,” InfoMat, vol. 6, 2024, https://doi.org/10.1002/inf2.12568.
  • [15] Park, S., Shou, W., Makatura, L., Matusik, W., Fu, K., “3D printing of polymer composites: materials, processes, and applications,” Matter, vol. 5, 2022, doi: 10.1016/j.matt.2021.10.018.
  • [16] Tóth, L.F., Sukumaran, J., Stebényi, G. and De Baets, P.,”Tribo-mechanical interpretation for advanced thermoplastics and the effects of wear-induced crystallization,” Wear, vol. 440-441, 2019, pp. 203083. https://doi.org/10.1016/j.wear.2019.203083
  • [17] Xin, L., Zhike, L., Hongxin, L., Nanqi, S., Cheng, F., Bin, H., Changging, Y. and Haiyan, L., “Preparation of inorganic oil-containing carbon nanocapsules and tribological properties of PA6 composites,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 698, 2024. https://doi.org/10.1016/j.colsurfa.2024.134590.
  • [18] Sun, S., Ye, J. and Cai, Z., “Heterogeneous nucleation of calcium sulfate whisker in polyamide 6 and its efficient reinforcement on tribology performance, “ Polymer Composites, vol. 46 (2), 2024, pp. 1371-1382. https://doi.org/10.1002/pc.29044.
  • [19] Aparna, S., Purnima, D. and Adusumali, B.R., “Effect of short carbon fiber content and water absorption on tensile and impact properties of PA6/PP blend-based composites,” Polymer Composites, vol. 41(12), 2020, pp. 5167-5181. doi:10.1002/pc.25784.
  • [20] Walter, R., Selzer, R., Gurka, M. and Friedrich, K., “Effect of filament quality, structure, and processing parameters on the properties of fused filament fabricated short fiber-reinforced thermoplastics,” Structure and Properties of Additive Manufactured Polymer Components, 2020 pp. 253-302. https://doi.org/10.1016/B978-0-12-819535-2.00009-0.
  • [21] Zaghloul, M.M.Y., Steel, K., Veidt, M., Martin, D., Firouzi, M. and Heitzmann, T.M., “Influence of counter-face grit size and lubricant on the abrasive wear behaviour of thermoplastic polymers reinforced with glass fibres,” Tribology Letters, vol. 71, 2023, pp. 102. doi:10.1007/s11249-023-01774-9.
  • [22] Abdulridha, H.H., Abbas, T.F. and Bedan, A.S., “Predicting mechanical strength and optimized parameters in FDM-printed polylactic acid parts via artificial neural networks and desirability analysis,” Management Systems in Production Engineering, vol. 32(3), 2024, pp. 428-437. doi: 10.2478/mspe-2024-0040.
  • [23] Kumar, S. and Panneerselvam, K., “ Research on tribological behaviors of pure and glass fiber reinforced nylon 6 composites against polymer disc,” Journal of Material Science and Mechanical Engineering, vol. 2(6), 2015, pp. 24-28. https://www.researchgate.net/publica-tion/309735319_Research_on_Tribological_Behaviors_of_Pure_and_Glass_Fiber_Reinforced_Nylon_6_Composites_against_Polymer_Disc.
  • [24] Dawoud, M., Taha, I. and Ebeid, S.J., “Effect of processing parameters and graphite content on the tribological behaviour of 3D printed acrylonitrile butadiene styrene,” Materials Science & Engineering Technology, vol. 46 (12), 2015, pp. 1185-1195. https://doi.org/10.1002/mawe.201500450.
  • [25] Mylski, J., Godzierz, M. and Olesik, P., “Effect of carbon fillers on the wear resistance of PA6 thermoplastic composites,” Polymers, vol. 12(10), 2020. https://doi.org/10.3390/polym12102264.
  • [26] Prabhakaran, R.T.D. and Toftegaard, H., “Environmental effect on the mechanical properties of commingled-yarn-based carbon fibre/polyamide 6 composites,” Journal of Composite Materials, vol. 48, 2014, pp. 2551-2565. doi:10.1177/0021998313501012.
  • [27] Palma, T., Munther, M., Damasus, P., Salari, S., Beheshti, A. and Davami, K., “Multiscale mechanical and tribological characterizations of additively manufactured polyamide 12 parts with different print orientations,” Journal of Manufacturing Processes, vol. 40, 2019, pp. 76-83. https://doi.org/10.1016/j.jmapro.2019.03.004.
  • [28] Mohamed, O., Masood, H. and Bhowmik, J., “Analysis of wear behavior of additively manufactured PC-ABS parts,” Materials Letters, vol. 230,2018, pp. 261-265. https://doi.org/10.1016/j.matlet.2018.07.139.
  • [29] Arifvianto, B., Prayoga, B., Suyitno, D., Mahardika, M., Dharmastiti, R. and Salim, U., “Sliding wear characteristics of FDM-processed polylactic-acid in bovine blood serum,” Mechanical Engineering and Sciences, vol. 13(4), 2019, pp. 5848-5861. doi: 10.15282/jmes.13.4.2019.10.0466.
  • [30] ISO 527-2 (n.d.) Plastics – Determination of tensile properties. International Organization for Standardization.
  • [31] Titko, M., Novák, L. and Jánošíková, M. (2021) Praktická štatistika. Žilina: EDIS – Žilinská univerzita. ISBN 978-80-554-1814-8.
  • [32] Sudin, M.N., Ramli, F.R., Alkahari, M.R. and Abdullah, M.A., “Comparison of wear behavior of ABS and ABS composite parts fabricated via fused deposition modelling,” vol. 5(1), 2018, pp.164-169. https://doi.org/10.21833/ijaas.2018.01.022.
  • [33] Zhou, S., Tashiro, K. and Tadaoki, I., “Moisture effect on structure and mechanical property of nylon 6 as studied by the time-resolved and simultaneous measurements of FT-IR and dynamic viscoelasticity under the controlled humidity at constant scanning rate,” Polymer Journal, vol. 33, 2001, pp. 344-355. https://doi.org/10.1295/polymj.33.344.
  • [34] Mitaľ, G., Gajdoš, I., Spišák, E., Majerníková, J. and Jezný, T., “An analysis of selected technological parameters’ influences on the tribological properties of products manufactured using the FFF technique, “Applied Sciences, vol. 12, 2022 pp. 3853. doi: https://doi.org/10.3390/app12083853.
  • [35] Clavería, I., Elduque, D., Santolaria, J., Pina, C., Javierre, C. and Fernandez, A., “The influence of environmental conditions on the dimensional stability of components injected with PA6 and PA66,” Polymer Testing, vol. 50, 2016, pp. 15-25. https://doi.org/10.1016/j.polymertesting.2015.12.008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b45f3e3-b168-48cf-a196-3b4263fddcb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.