PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Probabilistic estimation of diverse soil condition impact on vertical axis tank deformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The calculations of fuel tanks should take into account the geometric imperfections of the structure as well as the variability of the material parameters of the foundation. The deformation of the tank shell can have a significant impact on the limit state of the structure and its operating conditions. The paper presents a probabilistic analysis of a vertical-axis, floating-roof cylindrical shell of a tank with a capacity of 50000 m3 placed on stratified soil with heterogeneous material parameters. The impact of a random subsoil description was estimated using the Point Estimated Method (PEM). In this way, the number of analyzed FEM models was significantly reduced. This approach also makes it possible to assess the sensitivity of tank settlement and deformation to the changing foundation conditions.
Rocznik
Strony
art. no. e144576
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland
  • ERSYS, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland
Bibliografia
  • [1] K. Rasiulis, A. Šapalas, R. Vadlūga, and M. Samofalov. “Stress/strain state investigations for extreme points of thin wall cylindrical tanks,” J. Constr. Steel. Res., vol. 62, pp. 1232–1237, 2006, doi: 10.1016/j.jcsr.2006.04.016.
  • [2] G. Grget, K. Ravnjak, and A. Szavits-Nossan, “Analysis of results of molasses tanks settlement testing,” Soils Found., vol. 58, pp. 1260–1271, 2018, doi: 10.1016/j.sandf.2018.07.009.
  • [3] S. Gunerathne, H. Seo, W.D. Lawson, and P.W. Jayawickrama, “Analysis of edge-to-center settlement ratio for circular storage tank foundation on elastic soil,” Comput. Geotech., vol. 102, pp. 136–147, 2018, doi: 10.1016/j.compgeo.2018.05.008.
  • [4] R. Ignatowicz and E. Hotala, “Failure of cylindrical steel storage tank due to foundation settlements,” Eng. Fail. Anal., vol. 115, 2020, doi: 10.1016/j.engfailanal.2020.104628.
  • [5] S. Nassernia and H. Showkati, “Experimental investigation to local settlement of steel cylindrical tanks with constant and variable thickness,” Eng. Fail. Anal., vol. 118, 2020, doi: 10.1016/j.engfailanal.2020.104916.
  • [6] W. Puła and Ł. Zaskórski, “On some methods in safety evaluation in geotechnics,” Stud. Geotech. Mech., vol. 37, no. 2, pp. 17–32, 2015, doi: 10.1515/sgem-2015-0016.
  • [7] M. Aldosary, J. Wang, and C. Li, “Structural reliability and stochastic finite element methods: State-of-the-art review and evidence-based comparison,” Eng. Comput., vol. 35, pp. 2165–2214, 2018, doi: 10.1108/EC-04-2018-0157.
  • [8] B.K. Low and K.K. Phoon, “Reliability-based design and its complementary role to Eurocode 7 design approach,” Comput. Geotech., vol. 65, pp. 30–44, 2015, doi: 10.1016/j.compgeo.2014.11.011.
  • [9] K.K. Phoon et al., “Some observations on ISO2394:2015 Annex D (Reliability of Geotechnical Structures),” Struct. Saf., vol. 62, pp. 24–33, 2016, doi: 10.1016/J.STRUSAFE.2016.05.003.
  • [10] G.A. Fenton and D.V. Griffiths, “Three-Dimensional Probabilistic Foundation Settlement,” J. Geotech. Geoenvironmental Eng., vol. 131, pp. 232–239, 2005, doi: 10.1061/(asce)1090-0241(2005)131:2(232).
  • [11] W. Puła and M. Chwała, “Random bearing capacity evaluation of shallow foundations for asymmetrical failure mechanisms with spatial averaging and inclusion of soil self-weight,” Comput. Geotech., vol. pp. 101, 176–195, 2018, doi: 10.1016/j.compgeo.2018.05.002.
  • [12] T. Al-Bittar, A.-H. Soubra, and J. Thajeel, “Kriging-based reliability analysis of strip footings resting on spatially varying soils,” J. Geotech. Geoenvironmental Eng., vol. 144, p. 04018071, 2018, doi: 10.1061/(asce)gt.1943-5606.0001958.
  • [13] R. Suchomel and D. Mašín, “Probabilistic analyses of a strip footing on horizontally stratified sandy deposit using advanced constitutive model,” Comput. Geotech., vol. 38, pp. 363–374, 2011, doi: 10.1016/j.compgeo.2010.12.007.
  • [14] Z. Młynarek, J. Wierzbicki, and P. Monaco, “Use of DMT and CPTU to assess the G0 profile in the subsoil,” In: Cone Penetration Testing 2022, G. Gottardi and L. Tonii, Eds., Taylor&Francis Group, CRC Press 2022, pp. 570–576, doi: 10.1201/9781003308829-82.
  • [15] T. Godlewski and W. Bogusz, “Philosophy of geotechnical design in civil engineering – Possibilities and risks,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no 2, pp. 289–306, 2019, doi: 10.24425/bpas.2019.128258.
  • [16] J. Ching, Y.G. Hu, and K.K. Phoon, “Effective Young’s modulus of a spatially variable soil mass under a footing,” Struct. Saf., vol 73, pp. 99–1132, 2018, doi: 10.1016/j.strusafe.2018.03.004.
  • [17] K. Żyliński and J. Górski, “Deformation of a shell of a fuel tank caused by non-uniform soil settlement,” in XXVII LSCE 2021 Lightweight Structures in Civil Engineering. Contemporary problems. Book of Abstracts, J. Szafran and M. Kamiński, Eds., Poland, 2021, pp. 161–164.
  • [18] K. Żyliński and J. Górski, “The impact of footing conditions of a vertical-axis floating-roof tank on structural shell deformation,” in XXVII LSCE 2021 Lightweight Structures in Civil Engineering. Contemporary problems. Book of Abstracts, J. Szafran and M. Kamiński, Eds., Poland, 2021.
  • [19] K. Żyliński, K. Winkelmann, and J. Górski, “The effect of the selection of 3-D random numerical soil models on strip foundation settlements,” Appl. Sci., vol. 11, 2021, doi: 10.3390/app11167293.
  • [20] E. Rosenblueth, “Point estimates for probability moments,” Proc. Natl. Acad. Sci. USA, vol. 72, pp. 3812–3814, 1975, doi: 10.1073/pnas.72.10.3812.
  • [21] M.E. Harr, “Probabilistic estimates for multivariate analyses,” Appl. Math. Model, vol. 13, pp. 313–318, 1989, doi: 10.1016/0307-904X(89)90075-9.
  • [22] H.P. Hong, “An efficient point estimate method for probabilistic analysis,” Reliab. Eng. Syst. Saf., vol. 59, pp. 261–267, 1998, doi: 10.1016/S0951-8320(97)00071-9.
  • [23] M. Ahmadabadi and R. Poisel, “Assessment of the application of point estimate methods in the probabilistic stability analysis of slopes,” Comput. Geotech., vol. 69, pp. 540–550, 2015, doi: 10.1016/j.compgeo.2015.06.016.
  • [24] J.P. Wang and D. Huang, “Rosen point: A Microsoft Excel-based program for the Rosenblueth point estimate method and an application in slope stability analysis,” Comput. Geosci., vol. 48, pp. 239–243, 2012, doi: 10.1016/j.cageo.2012.01.009.
  • [25] S. Commend, S. Kivell, R. Obrzud, K. Podle ́s, A. Truty, and T. Zimmermann, Computational geomechanics. getting started with ZSOIL.PC. V. Rossolis Editions, Switzerland: Preverenges 2018.
  • [26] A. Truty, “On consistent nonlinear analysis of soil-structure interaction problems,” Stud. Geotech. Mech., vol. 40, no. 2, pp. 86-95, 2018, doi: 10.2478/sgem-2018-0019.
  • [27] T. Zimmermann, J. Sarf, A. Truty, and K. Podles, “Numerics for geotechnics and structures. Recent developments in ZSoil.PC,” in Applications of Computational Mechanics in Geotechnical Engineering V; Taylor & Francis. 2007, doi: 10.1201/9781439833414.ch8.
  • [28] Python Manual – 2.7.17, 2019.
  • [29] A.S. Nowak and K.R. Collins, Reliability of structures, New York 2000.
  • [30] W. Bogusz and M. Kociniak, “Numerical analysis of a foundation of a cooling tower in difficult geotechnical conditions,” Proc. of the 9th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2018), A.S. Cardoso, J.L. Borges, P.A. Costa, A.T. Gomes, J.C. Marques and C.S. Vieira, Eds., Portugal, pp. 919–926, 2018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b43a7d2-d178-447f-bc7b-bfcc44544267
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.