Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Pb(II)-resistant bacterium was isolated from heavy metal-contained soils and used as a biosorbent to remove Pb(II). The strain was identified as Enterobacter sp. based on the 16S rRNA sequence analysis. The effect of biosorption properties (pH value, Pb(II) concentration, bacterial concentration and temperature) on Pb(II) was investigated by batch experiments. Results of FTIR and XPS showed that the biosorption process mainly involved some oxygen-containing groups (-OH and -COOH groups). The experimental results and equilibrium data were fitted by pseudo-second-order kinetic model and Langmuir model, respectively. The experimental biosorption isotherms fitted the Langmuir model, and the maximum biosorption capacity was 40.75 mg/g at 298 K. The calculated ΔGо and ΔHо were –4.06 and 14.91(kJ/mol), respectively, which indicated that biosorption process was spontaneous and endothermic. Results show that Enterobacter sp. will be an efficient biosorbent for Pb(II) removal.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
28--36
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, P.R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China
autor
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, P.R. China
autor
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, P.R. China
autor
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, P.R. China
autor
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China
Bibliografia
- 1. Abdi, O. & Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science, 6, pp. 1386-1399.
- 2. Ahalya, N., Ramachandra, T.V. & Kanamadi, R.D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, pp. 235-250.
- 3. Baruah, R., Kalita, D.J., Saikia, B.K., Gautam, A., Singh, A.K. & Deka Boruah, H.P. (2016). Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes. International Biodeterioration & Biodegradation, 112, pp. 18-30, DOI: 10.1016/j.ibiod.2016.04.032.
- 4. Baysal, Z., Cinar, E., Bulut, Y., Alkan, H. & Dogru, M. (2009). Equlibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. Journal of Hazardous Materials, 161, pp. 62-67, DOI: 10.1016/j.jhazmat.2008.02.122.
- 5. Bobik, M., Korus, I. & Dudek, L. (2017). The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions, Archives of Environmental Protection, 43, pp. 3-9, DOI: 10.1515/aep-2017-0017.
- 6. Boyanov, M.I., Kelly, S.D., Kemner, K M., Bunker, B.A., Fein, J.B. & Fowle, D. (2003). Adsorption of cadium to Bacillus subtilis bacterial cell walls: A pH-dependent X-ray absorption fine structure spectroscopy study. Geochimica Cosmochimica Acta, 67, pp. 3299-3311, DOI: 10.1016/S0016-7037(02)01343-1.
- 7. Bulut, Y., Gozubenli, N. & Aydin, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. Journal of Hazardous Materials, 144, pp. 300-306, DOI: 10.1016/j.jhazmat.2006.10.027.
- 8. Chen, C., Hu, J. & Wang, J.L. (2020). Biosorption of uranium by immobilized Saccharomyces cerevisiae. Journal of Environmental Radioactivity, 213, pp. 106-158, DOI: 10.1016/j.jenvrad.2020.106158.
- 9. Chen, Z., Pan, X., Chen, H., Guan, X. & Lin, Z. (2016). Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from lead-zinc mine tailings. Journal of Hazardous Materials, 301, pp. 531-537, DOI: 10.1016/j.jhazmat.2015.09.023.
- 10. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2005). Biosorption of Cr(III), Cd(II), and Cu(II) ions by blue-green algae Spiruline sp: Kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, pp. 75-84, DOI: 10.1016/j.chemosphere.2004.10.005.
- 11. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2004). Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy, 73, pp. 147-153.
- 12. Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S. & Choong, S.Y. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175, pp. 305-316, DOI: 10.1016/j.hydromet.2003.10.003.
- 13. Çolak, F., Atar, N., Yazıcıoğlu, D. & Olgun, A. (2011). Biosorption of lead from aqueous solutions by bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 173, pp. 422-428, DOI: 10.1016/j.cej.2011.07.084.
- 14. Fourest, E. & Roux, J.C. (1992). Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Applied Microbiology Biotechnology, 37, pp. 399-403.
- 15. Gupta, V.K., Shrivastava, A.K. & Jain, N. (2001). Biosorption of chromium from aqueous solutions by green algae Spirogyra species. Water Research, 35, pp. 4079-4085, DOI: 10.1016/S0043-1354(01)00138-5.
- 16. Han, R., Li, H., Li, Y., Zhang, J., Xiao, H. & Shi, J. (2006). Biosorption of copper and lead ions by waste beer yeast. Journal of Hazardous Materials, 137, pp. 1569-1576, DOI: 10.1016/j.jhazmat.2006.04.045.
- 17. Holan, Z.R., Volesky, B. & Prasetyo, I. (1993). Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioengineering, 41, pp. 819-825.
- 18. Kratochvil, D. & Volesky, B. (1998). Advance in the biosorption of heavy metals. Trends Biotechnolgy, 16, pp. 291-300, DOI: 10.1016/S0167-7799(98)01218-9.
- 19. Ku, Y. & Jung, I.L. (2001). Photocatalytic reduction of Cr(IV) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research, 35, pp. 135-142, DOI: 10.1016/S0043-1354(00)00098-1.
- 20. Lee, Y. C. & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102, pp. 5297-5304, DOI: 10.1016/j.biortech.2010.12.103.
- 21. Li, D.D., Xu, X.J., Yu, H.W. & Han, X.R. (2017). Characterization of Pb(II) biosorption by psychrotrophic strain Pseudomonas sp. 13 isolated from permafrost soil of Mohe wetland in Northeast China. Journal of Environmental Management, 196, pp. 8-15, DOI: 10.1016/j.jenvman.2017.02.076.
- 22. Liu, L., Liu, J., Liu, X.T., Dai, C. W., Zhang, Z.X., Song, W.C. & Chu, Y. (2019). Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. Journal of Environmental Radioactivity, 203, pp. 117-124, DOI: 10.1016/j.jenvrad.2019.03.008.
- 23. Liu, L., Chen, J.W., Liu, F., Song, W.C. & Sun, Y.B. (2021). Bioaccumulation of uranium by Candida utilis: Investigated by water chemistry and biological effects. Environmental Research, 194, 110691, DOI: 10.1016/j.envres.2020.110691.
- 24. Liu, L., Zhang, Z.X., Song, W.C. & Chu, Y.N. (2018). Removal of radionuclide U(VI) from aqueous solution by the resistant fungus Absidia corymbifera. Journal of Radioanalytical and Nuclear Chemistry, 318, pp. 1151-1160, DOI: 10.1007/s10967-018-6209-2.
- 25. Lu, N. Q., Hu, T.J., Zhai, Y. B., Qin, H. Q., Aliyeva, J. & Zhang, H. (2020). Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environmental Research, 182, 109061, DOI: 10.1016/j.envres.2019.109061.
- 26. Lu, X., Zhou, X.J. & Wang, T.S. (2013). Mechanism of uranium(VI) uptake by saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies. Journal of Hazardous Materials, 262, pp. 297-303, DOI: 10.1016/j.jhazmat.2013.08.051.
- 27. Ma, X.M., Cui, W.G., Yang, L., Yang, Y.Y., Chen, H.F. & Wang, K. (2015). Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds. Bioresource Technology, 185, pp. 70-78, DOI: 10.1016/j.biortech.2015.02.074.
- 28. Naik, B.R., Suresh, C., Kumar, N.S.V., Seshaiah, K. & Reddy, A.V.R. (2017). Biosorption of Pb(II) and Ni(II) ions by chemically modified Eclipta alba stem powder: kinetics and equilibrium studies. Separation Science and Technology, 52, pp. 1717-1732, DOI: 10.1080/01496395.2017.1298614.
- 29. Naik, M.M. & Dubey, S.K. (2013). Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environment Safety, 98, pp. 1-7, DOI: 10.1016/j.ecoenv.2013.09.039.
- 30. Naseem, R. & Tahir, S.S. (2011). Removal of Pb(II) from aqueous-acidic solutions by using bentonite as an adsorbent. Water Researce, 35, pp. 3982-3986, DOI: 10.1016/S0043-1354(01)00130-0.
- 31. Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B. & Guven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. Decanicus and Geobacillus thermoleovorans sub. Sp. Stromboliensis: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 152, pp. 195-206, DOI: 10.1016/j.cej.2009.04.041.
- 32. Raize, O., Argaman, Y. & Yannai, S. (2004). Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnology and Bioengineering, 87, pp. 451-458, DOI: 10.1002/bit.20136.
- 33. Ramrakhiani, L., Ghosh, S. & Majumdar, S. (2016). Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: a Review. Applied Biochemistry and Biotechnology, 180, pp. 41-78, DOI: 10.1007/s12010-016-2083-y.
- 34. Ren, G., Jin, Y., Zhang, C., Gu, H. & Qu, J. (2015). Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb(II). Ecotoxicology and Environment Safety, 117, pp. 141-148, DOI: 10.1016/j.ecoenv.2015.03.033.
- 35. Sag, Y. & Kutsal, T. (2000). Determination of activation energies of heavy metal ions on Zoogloe ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 35, pp. 145-151.
- 36. Saha, G.C., Hoque, M., Miah, M., Holze, R., Chowdhury, D.A., Khandaker, S. & Chowdhury, S. (2017). Biosorptive removal of lead from aqueous solutions onto taro (colocasiaesculenta(l.) schott) as a low cost bioadsorbent: characterization, equilibria, kinetics and biosorption-mechanism studies. Journal of Environmental Chemical Engineering, 5, 2151-2162, DOI:10.1016/j.jece.2017.04.013.
- 37. Sahin, Y. & Ozturk, A. (2005). Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 40, pp. 1895-1901, DOI: 10.1016/j.procbio.2004.07.002.
- 38. Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., Chergui, A. & Kerchich, Y. (2004). Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochemical Engineering Journal, 19, pp. 127-135, DOI: 10.1016/j.bej.2003.12.007.
- 39. Shroff, K.A. & Vaidya, V.K. (2011). Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chemical Engineering Journal, 171, pp. 1234-1245, DOI: 10.1016/j.cej.2011.05.034.
- 40. Siripongvutikorn, S., Asksonthong, R. & Usawakesmanee, W. (2016). Evaluation of harmful heavy metal (Hg, Pb and Cd) reduction using Halomonas elongata and Tetragenococcus halophilus for protein hydrolysate product. Functional Foods in Health & Disease, 6, pp. 195-205, DOI: 10.31989/ffhd.v6i4.240.
- 41. Song, W.C., Wang, X.X., Chen, Z.S., Sheng, G.D., Hayat, T., Wang, X.K. & Sun, Y. (2018). Enhanced immobilization of U(VI) on Mucor circinelloides in presence of As (V): Batch and XAFS investigation. Environmental Pollution, 237, pp. 228-236, DOI: 10.1016/j.envpol.2018.02.060.
- 42. Song, W.C., Wang, X.X., Wen, T., Yu, S.J., Zou, Y.D. & Sun, Y.B. (2016). Immobilization of As(V) in Rhizopus oryzae investigated by batch and XAFS techniques. ACS Omega, 1, pp. 899-906, DOI: 10.1021/acsomega.6b00260.
- 43. Tabaraki, R., Nateghi, A. & Ahmady-Asbchin, S. (2014). Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. International Biodeterioration Biodegradation, 93, pp. 145-152, DOI: 10.1016/j.ibiod.2014.03.022.
- 44. Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., Ren, X., Ye, S., Bo, P. & Feng, H. (2017). Sustainable efficient adsorbent: alkaliacid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, pp. 160-169, DOI: 10.1016/j.cej.2017.11.048.
- 45. Tunali, S., Cabuk, A. & Akar, T. (2006). Removal of lead and copper ions from soil. Chemcal Engineering Journal, 115, pp. 203-211, DOI: 10.1016/j.cej.2005.09.023.
- 46. Uzun, Y. & Şahan, T. (2017). Optimization with Response Surface Methodology of biosorption conditions of Hg(II) ions from aqueous media by Polyporus Squamosus fungi as a new biosorbent. Archives of Environmental Protection, 43, pp. 37-43. DOI 10.1515/aep-2017-0015.
- 47. Wang, J.L. & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24, pp. 427-451.
- 48. Wang, N., Xu, X., Li, H., Wang, Q., Yuan, L. & Yu, H. (2017). High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb(II) removal from wastewater. Bioresource Technology, 233, pp. 58-66, DOI: 10.1016/j.biortech.2017.02.069.
- 49. Wang, T.S., Zheng, X.Y., Wang, X.Y., Lu, X. & Shen, Y.H. (2017). Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. Journal of Environmental Radioactivity, 167, pp. 92-99, DOI: 10.1016/j.jenvrad.2016.11.018.
- 50. Zheng, X.Y., Shen, Y.H., Wang, X.R. & Wang, T.S. (2018). Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae. Chemosphere, 203, pp. 109-116, DOI: 10.1016/j.chemosphere.2018.03.165
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b428113-6905-4791-bf38-8c53eed84966
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.