PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

New Trends in Motion Capture Systems for Human Gait Analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents new trends in motion capture systems for human gait analysis, such as: resonant magnetic techniques, inertial techniques, and wireless positioning techniques based on Ultra-Wideband (UWB) communication. The new techniques, due to the irrelatively low expected prices, can replace expensive optical systems that are commonly used today. As the new systems are mostly based on the Wireless Sensor Network (WSN) technology, any improvement in their ranging precision, which is a key aspect in this case requires development of new ultra low power microelectronics circuits. Selected solutions in this area are presented in the paper.
Rocznik
Strony
319--331
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • Faculty of Telecommunication and Electrical Engineering, University of Technology and Life Sciences, Kaliskiego 7, 85-796, Bydgoszcz, Poland
  • Institute of Microtechnology, Swiss Federal Institute of Technology in Lausanne (EPFL), Rue A.-L. Breguet 2, CH-2000, Neuchatel, Switzerland
autor
  • Faculty of Mechanical Engineering, Białystok University of Technology, Wiejska 45 C, 15-351 Białystok, Poland
autor
  • Institute of Microtechnology, Swiss Federal Institute of Technology in Lausanne (EPFL), Rue A.-L. Breguet 2, CH-2000, Neuchatel, Switzerland
Bibliografia
  • [1] Jeon J. U., Higuchi T., “Electrostatic suspension of dielectrics”, IEEE Transactions on Industrial Electronics, 45, pp. 938-946, 1998.
  • [2] Jin J., Yih T. C., et al., “Direct electrostatic levitation and propulsion of silicon wafer”, IEEE Transactions on Industry Applications, 34, pp. 975-984, 1998.
  • [3] Yamamoto A., et al., “A high-power electrostatic motor using skewed electrodes”, Electrical Engineering in Japan, 125, 3, pp. 50-58, 1998.
  • [4] Yazdi N., Ayazi F., Najafi K., “Micromachined inertial sensors”, Proceedings of the IEEE, 86, 8, pp. 1640-1659, 1998.
  • [5] Maulik P. C., et al., “A 16-Bit 250-kHz Delta-Sigma Modulator and Decimation Filter”, IEEE Journal of Solid-State Circuits, 35, 4, pp. 458-467, 2000.
  • [6] Aminian K., et al., “Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes”, Journal of Biomechanics, 35, 5, pp. 689-699, 2002.
  • [7] Xie H. K., Fedder G. K., “Integrated microelectromechanical gyroscopes”, Journal of Aerospace Engineering, 16, pp.65-75, 2003.
  • [8] Pauk J., “Gait assessment of children with cerebral palsy by stochastic approximation function”, Acta of Bioengineering and Biomechanics, 6, pp.338-341, 2004.
  • [9] Yazdi N., Kulah H., Najafi K., “Precision readout circuits for capacitive microaccelerometers”, Proceedings of the IEEE Sensors, 1, pp. 28-31, 2004.
  • [10] Mortazavi Zanjani S. M., et al., “Comparative Study and Design of Decimation Filter for High-Precision Audio Data Converters”, International Conference on Microelectronics (ICM), pp. 139-143, 2005.
  • [11] Hashi S., Toyoda M., et al., “Wireless Magnetic Motion Capture System for Multi-Marker Detection”, IEEE Transactions on Magnetics, 42, 10, pp. 3279-3281, 2006.
  • [12] Irahhauten Z., Bellusci B., et al. “Investigation of UWB Ranging in Dense Indoor Multipath Environments”, 10th IEEE Singapore International Conference on Communication Systems (ICCS), pp. 1-5, 2006.
  • [13] Korvink J. G., Paul O., “MEMS: A Practical Guide to Design, Analysis, and Applications”, William Andrew Publishing/Noyes, 2006.
  • [14] Pauk J., “Fuzzy logic in biomechanics of human gait”, International Journal of Design & Nature, WIT Press, Southampton, 1, 1, pp. 1-12, 2006.
  • [15] Pauk J., “Gait assessment in diplegia patients using mathematical modeling”, Journal of Vibroengineering, 8, 3, pp. 53-56, 2006.
  • [16] Stoica L., Rabbachin A., Oppermann I., “A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimatio”, IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 4, pp. 1637-1646, 2006.
  • [17] Acht V., Bongers E., et al., “Miniature Wireless Inertial Sensor for Measuring Human Motions”, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp. 6278-6281, 2007.
  • [18] Renzo M. D., Buehrer R., Torres J. “Pulse Shape Distortion and Ranging Accuracy in UWB-Based Body Area Networks for Full-Body Motion Capture and Gait Analysis”, IEEE Global Telecommunications Conference, (GLOBECOM), pp. 3775-3780, 2007.
  • [19] Aristidou A., Cameron J., Lasenby J., “Real-Time Estimation of Missing Markers in Human Motion Capture”, The 2nd International Conference on Bioinformatics and Biomedical Engineering, (ICBBE), 1343-1346, 2008.
  • [20] Bellusci G., Janssen G. J. M., et al., “A new approach to low complexity UWB indoor LOS range estimation”, IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1-6, 2008.
  • [21] Chen S. L., et al., “A variable control system for wireless body sensor network”, IEEE International Symposium on Circuits and Systems, (ISCAS), pp. 2034-2037, 2008.
  • [22] Cloete T., Scheffer C., “Benchmarking of a full-body inertial motion capture system for clinical gait analysis”, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 20-25, pp. 4579-4582, 2008.
  • [23] Dejnabadi H., Jolles B. M., Aminian K., “A New Approach for Quantitative Analysis of Inter-Joint Coordination During Gait”, IEEE Transactions on Biomedical Engineering, 55, 2, pp. 755-764, 2008.
  • [24] Lu Y., Wang L., et al, “Multi-view Human Motion Capture with an Improved Deformation Skin Model”, Digital Image Computing Techniques and Applications (DICTA), 1-3, p. 420-427, 2008.
  • [25] Sharma A., Zaman M. F., et al., “A 0.1°/HR bias drift electronically matched tuning fork microgyroscope”, IEEE 21th International Conference on Micro Electro Mechanical Systems, MEMS pp. 6-9, 2008.
  • [26] Hashi S., Toyoda M, et al., “Numerical Study on the Improvement of Detection Accuracy for a Wireless Motion Capture System”, IEEE Transactions on Magnetics, 45, 6, pp. 2736-2739, 2009.
  • [27] Długosz R., Iniewski K., “Analog-to-Digital Converters for Radiation Detection Electronics”, Electronics for Radiation Detection (Devices, Circuits, and Systems), CRC Press ed.: Iniewski K., pp. 285-312, 2010.
  • [28] Brahma P., Reddy K., et al., “An Area efficient and low power design for decimation filter using CSD representation”, International Journal of Advanced Engineering Sciences and Technologies, 6, 1, pp. 111-115, 2011.
  • [29] Długosz R., Talaśka T., Szulc M., et al., “A Low Power, Low Chip Area Decimation Filter for Σ = Δ Modulator for Flywheel MEMS Gyro realized in the CMOS 180 nm Technology”, 28th International Conference on Microelectronics (MIEL), Serbia, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b3f5b44-e996-41d9-bc1f-ef9fabec164b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.