PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of minimum energy control on steel loss in VR stepper motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research presents a 3D FE method for the simulation of the variable reluctance stepper motor dynamics. The proposed model is used to obtain the optimal minimum energy control law that minimizes the energy injected by the controller. The method is based on the strong coupling of field - circuit equations and extended to eddy current, motion and nonlinearity problem. The linearization technique for the coupled problem is presented. Also the lamination of the motor core is considered. In the paper the open - loop control problem is analyzed. The proposed model is validated by the comparison with measurements. Next, to demonstrate the effectiveness of the proposed optimal minimum energy control method is applied. In both cases, the examination of the variable reluctance stepper motor dynamics and the steel loss in the core is presented and compared.
Rocznik
Strony
439--447
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wz.
Twórcy
autor
  • Chair of Computer Engineering, Poznan University of Technology Piotrowo 3a, 60-965 Poznań
autor
  • Chair of Computer Engineering, Poznan University of Technology Piotrowo 3a, 60-965 Poznań
autor
  • Chair of Computer Engineering, Poznan University of Technology Piotrowo 3a, 60-965 Poznań
Bibliografia
  • [1] Bolognani S., Zigliotto M., Fuzzy logic control of a switched reluctance motor drive. IEEE Trans. Ind. Appl. 32(5): 1063-1068 (1996).
  • [2] Cheng Z., Takahashi N., Forghani B. et al., Effect of Variation of B-H Properties on Loss and FluxInside Silicon Steel Lamination. IEEE Trans. Magn. 47(5): 1346-1349 (2011).
  • [3] Cheng Z., Takahashi N., Forghani B. et al., Effect of Excitation Patterns on Both Iron Loss and Fluxin Solid and Laminated Steel Configurations. IEEE Trans. Magn. 46(8): 3185-3188 (2010).
  • [4] Dyck D., Gilbert G., Lowther D.A., A performance model of an induction motor for transient simulationwith a PWM drive. IEEE Trans. Magn. 46(8): 3093-3100 (2010).
  • [5] Fu W., Ho S., Enhanced nonlinear algorithm for the transient analysis of magnetic field and electriccircuit coupled problems. IEEE Trans. Magn. 45(2): 701-706 (2009).
  • [6] Gyselinck J., Vandevelde L., Melkebeek J. et al., Calculation of eddy currents and associated lossesin electrical steel laminations. IEEE Trans. Magn. 35(3), (1999).
  • [7] Haddad W., Chellaboina V., Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press (2008).
  • [8] Krishnan R., Switched Reluctance Motor Drives. Modeling, Simulation, Analysis, Design, and Applications., ser. I. E. Boca Raton, FL: CRC Press (2001).
  • [9] Lin D., Zhou P., Chen Q. et al., The Effects of Steel Lamination Core Losses on 3D Transient MagneticFields. IEEE Trans. Magn. 46(8): 3539-3542 (2010).
  • [10] Lin D., Zhou P., Fu W., Badics Z., Cendes Z., A dynamic core loss model for soft ferromagnetic andpower ferrite materials in transient finite element analysis. IEEE Trans. Magn. 40(2): 1318-1321 (2004).
  • [11] Lin D., Zhou P., Stanton S., Cendes Z.J., An Analytical Circuit Model of Switched Reluctance Motors. IEEE Trans. Mag. 45(9): 5368-5375 (2009).
  • [12] Mir S., Islam M., Sebastian T., Husain I., Fault-tolerant switched reluctance motor drive usingadaptive fuzzy logic controller. IEEE Trans. Power Electron. 19(2): 289-295 (2004).
  • [13] Paramasivam S., Arumugam R., Real time hybrid controller implementation for switched reluctancemotor drive. Amer. J. Appl. Sci. 1(4): 284-294 (2004).
  • [14] Salon S.J., Finite element analysis of electrical machines. Norwell, MA: Kluwer (1995).
  • [15] Stępień S., Bernat J., Modeling and optimal control of variable reluctance stepper motor. COMPEL 30(2): 726-740 (2011).
  • [16] Vijayakumar K., Karthikeyan R., Paramasivam S. et al., Switched Reluctance Motor Modeling,Design, Simulation, and Analysis: A Comprehensive Review. IEEE Trans. Mag. 44(12): 4605-4617 (2008).
  • [17] Wang Y., Chau K., Chan C., Jiang J., Transient analysis of a new outer-rotor permanent magnetbrushless DC drive using circuit-field-torque coupled time-stepping finite element method. IEEE Trans. Magn. 38(3): 1297-1300 (2002).
  • [18] Zhou P., Fu W., Lin D., Stanton S., Cendes Z., Numerical modeling of magnetic devices. IEEE Trans. Magn. 40(4): 1803-1809 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b3eb1bb-72bb-4b76-bcdd-9ee5b68cb47c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.