PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the equation [formula]

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let n and m be two positive integers, and the second-order Fermat-type functional equation [formula] does not have a nonconstant meromorphic solution in the complex plane, except [formula] The research gives a ready-to-use scheme to study certain Fermat-type functional differential equations in the complex plane by using the Nevanlinna theory, the complex method, and the Weierstrass factorization theorem.
Wydawca
Rocznik
Strony
art. no. 20230103
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, P. R. China
Bibliografia
  • [1] F. Gross, On the equation fn+gn=1, Bull. Amer. Math. Soc. 72 (1966), no. 1, 86–88, DOI: https://doi.org/10.1090/S0002-9904-1966-11429-5.
  • [2] F. Gross, On the functional equation fn+gn=hn, Amer. Math. Monthly 73 (1966), no. 10, 1093–1096, DOI: https://doi.org/10.2307/2314644.
  • [3] F. Gross, Errata: “On the equation fn+gn=1”, Bull. Amer. Math. Soc. 72 (1966), no. 3, 576, DOI: https://doi.org/10.1090/S0002-9904-1966-11545-8.
  • [4] F. Gross, On the equation fn+gn=1. II, Bull. Amer. Math. Soc. 74 (1968), no. 4, 647–648, DOI: https://doi.org/10.1090/S0002-9904-1968-11975-5.
  • [5] C. C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer. Math. Soc. 26 (1970), no. 2, 332–334, DOI: https://doi.org/10.1090/S0002-9939-1970-0264080-X.
  • [6] B. Q. Li, On Fermat-type functional and partial differential equations, in: I. Sabadini and D. Struppa, (eds), The Mathematical Legacy of Leon Ehrenpreis, Springer Proceedings in Mathematics, vol. 16, Springer, Milano, 2012, pp. 209–222, DOI: https://doi.org/10.1007/978-88-470-1947-8_13.
  • [7] I. N. Baker, On a class of meromorphic functions, Proc. Amer. Math. Soc. 17 (1966), no. 4, 819–822, DOI: https://doi.org/10.1090/S0002-9939-1966-0197732-X.
  • [8] B. Deng, C. Lei, and D. Yang, On the equation fn+(f′)m≡1, Southeast Asian Bull. Math. 37 (2013), no. 3, 333–339.
  • [9] G. Dang and H. Chen, On the equation afn+b(f′)m≡1, Southeast Asian Bull. Math. 43 (2019), no. 5, 663–670.
  • [10] K. Ishizaki, A note on the functional equation fn+gn+hn=1 and some complex differential equations, Comput. Methods Funct. Theory 2 (2003), no. 1, 67–85, DOI: https://doi.org/10.1007/BF03321010.
  • [11] K. Ishizaki and N. Kimura, Entire and meromorphic solutions of the functional equation fn+gn+hn=1 and differential equations, Comput. Methods Funct. Theory 19 (2019), no. 1, 157–172, DOI: https://doi.org/10.1007/s40315-018-0258-y.
  • [12] A. Eremenko, Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation, J. Math. Phys. Anal. Geom. 2 (2006), no. 3, 278–286.
  • [13] W. Yuan, Y. Li, and J. Lin, Meromorphic solutions of an auxiliary ordinary differential equation using complex method, Math. Method. Appl. Sci. 36 (2013), no. 13, 1776–1782, DOI: https://doi.org/10.1002/mma.2723.
  • [14] S. Lang, Elliptic Functions, Springer-Verlag, New York, 1987, DOI: https://doi.org/10.1007/978-1-4612-4752-4.
  • [15] R. Conte and M. Musette, Elliptic general analytic solutions, Stud. Appl. Math. 123 (2009), no. 1, 63–81, DOI: https://doi.org/10.1111/j.1467-9590.2009.00447.x.
  • [16] C. T. Chang and C. C. Yang, Fixed Points and Factorization Theory for Meromorphic Functions, Beijing University Press, Beijing, 1988.
  • [17] H. Wittich, Neuere Untersuchungen Über Eindeutige Analytische Funktionen, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1955, DOI: https://doi.org/10.1007/978-3-662-12575-5.
  • [18] A. Eremenko, Meromorphic solutions of equations of Briot-Bouquet Type, Teor. Funktsii Funktsional. Anal. i Prilozhen. 38 (1982), 48–56, English translation: Amer. Math. Soc. Transl. 133 (1986), 15–23.
  • [19] A. Eremenko, L. Liao, and T. Ng, Meromorphic solutions of higher order Briot-Bouquet differential equations, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 1, 197–206, DOI: https://doi.org/10.1017/S030500410800176X.
  • [20] G. Dang, New exact solutions of the sixth-order thin-film equation with complex method, Partial Differ. Equ. Appl. Math. 4 (2021), 100116, DOI: https://doi.org/10.1016/j.padiff.2021.100116.
  • [21] G. Dang, Meromorphic solutions of the (2 + 1)- and the (3 + 1)-dimensional BLMP equations and the (2 + 1)-dimensional KMN equation, Demonstr. Math. 54 (2021), no. 1, 129–139, DOI: https://doi.org/10.1515/dema-2021-0009.
  • [22] G. Dang, Meromorphic solutions of the seventh-order KdV equation by using an extended complex method and Painlevé analysis, ScienceAsia 49, no. 1, (2023), 108–115, DOI: http://dx.doi.org/10.2306/scienceasia1513-1874.2022.133.
  • [23] G. Dang and Q. Liu, Solving the conformable Huxley equation using the complex method, Electron. Res. Arch. 31 (2023), no. 3, 1303–1322, DOI: https://doi.org/10.3934/era.2023067.
  • [24] G. Dang, Elliptic and multiple-valued solutions of some higher order ordinary differential equations, Electron. Res. Arch. 31 (2023), no. 10, 5946–5958. DOI: https://doi.org/10.3934/era.2023302.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b3e3cb6-4ec1-4b63-8a7e-515d786ba085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.