PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Assessing the loading capacity of walnut peels as a nanobiomass for the biosorption of certain heavy metals from wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bio-removal of heavy metal pollution remains a major challenge in environmental biotechnology. This paper focuses on the potential of carbon nanoparticles for biosorption of zinc, copper, and cadmium ions from aqueous solutions, employing economical and environmentally sound plant wastes. Walnut peels were washed by distilled water, mixed with KOH, burned at 650 °C, and treated ultrasonically to obtain carbon nanoparticles. Standard solutions of the heavy metals under study were prepared based on calculations of the molecular weights of the relevant metal salts Zn, Cu, and Cd, the metal ions were estimated in both treated and wastewater sample. The experiment included evaluating the effect of some environmental factors on the process of biosorption of heavy metals from wastewater to choose the optimal conditions for the adsorption process. These environmental factors included the initial metal concentration, pH, temperature, retention time, and biomass. The optimum conditions of initial metal concentration, pH, temperature, retention time, and biomass were recorded as 100 mg/l, pH of 7, 45 °C., 60 min., 0.2 g respectively. These results were supported by XRD examination, which indicated the presence of two Bragg diffraction peaks in the carbon nanoparticles, and TEM results also indicated the presence of inhomogeneous particles, as well as the irregular shape of the surface of the carbon nanoparticles with a large surface area, according to SEM examination. However, the optimal adsorption conditions were applied in a laboratory treatment unit, which showed its efficiency in removing heavy metal ions from wastewater. Carbon nanoparticles derived from walnut shells can be employed as excellent adsorbents for removing heavy metal ions from aqueous solutions.
Słowa kluczowe
EN
Rocznik
Strony
169--182
Opis fizyczny
Bibliogr. 42 poz., rys. tab.,
Twórcy
  • Biology Department, College of Science, University of Anbar, Ar-Ramadi, Iraq
  • Biology Department, College of Science, University of Anbar, Ar-Ramadi, Iraq
  • Biology Department, College of Science, University of Anbar, Ar-Ramadi, Iraq
Bibliografia
  • 1. Jayaswal, K., Sahu, V., & Gurjar, B.R. (2018). Water pollution, human health and remediation. Water Remediation, 11–27.
  • 2. Ahamed, M.I., & Lichtfouse, E. (2021). Water pollution and remediation: Heavy metals. Springer.
  • 3. Gahlout, M.; Prajapati, H., Tandel, N., and Patel, Y. (2021). Biosorption: An EcoFriendly Technology for Pollutant Removal. Microbial Rejuvenation of Polluted Environment, 207–227. https://doi.org/10.1007/978-981-15-7455-9_9
  • 4. Al-Jobory, M.B., Al-Thwaini, A.N., Najeeb, L.M. (2018). Using sesame oil to treat the infection of hemorrhagic E. Coli o157: H7 bacteria isolation in Baghdad: Molecular and histological study. Plant Archives, 18(1), 627–637.
  • 5. Al-Aarajy, N.A.R., Turki, A.M., Alalousi, M.A. (2022). Assessment of Silver Nanoparticle as Anti-Salmonella Agent: Phenotypic and Genotypic Study. AIP Conference Proceedings. 2400, 030003.
  • 6. El-Bondkly, A.M., and El-Gendy, M.M. (2022). Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining waste water. Heliyon, 8(7): e09854. https://doi.org/10.1016/j.heliyon.2022.e09854
  • 7. Taha, A., Hussien, W. and Gouda, S.A. (2023). Bioremediation of heavy metals in wastewaters: a concise review. Egypt. J. Aquat. Biol. Fish., 27(1): 143–166. https://doi.org/10.21608/ejabf.2023.284415
  • 8. Hussain, S.A., Hasan, N.K., Al-Abodi, E.E. (2021). Biosorption to removing heavy metals from wastewater. Journal of Physics: Conference Series 1853: 012012 IOP Publishing. https://doi.org/10.1088/1742-6596/1853/1/012012
  • 9. Radhi, A.B., Shartooh, S.M., Al-Heety, E.A. (2021). Heavy metal pollution and sources in dust from primary schools and kindergartens in Ramadi City, Iraq. Iraqi Journal of Science. 62(6): 1816–1828.
  • 10. Xie, Sh. (2024). Biosorption of heavy metal ions from contaminated wastewater: an eco-friendly approach. Green Chemistry Letters and Reviews, 17(1): 2357213, https://doi.org/10.1080/17518253.2024.2357213
  • 11. Elwakeel, K.Z., Ahmed, M.M., Akhdhar, A., Al-ghamdi, H.M., Sulaiman, M.G.M., Hamza, M.F., Khan, Z.A. (2023). Effect of the magnetic core in alginate/gum composite on adsorption of divalent copper: cadmium, and lead ions in the aqueous system. Int. J. Biol. Macromol. 253: 126884. https://doi.org/10.1016/j.ijbiomac. 2023.126884
  • 12. Ungureanu, E.L., Mocanu, A.L., Stroe, C.A., Panciu, C.M., Berca, L., Sionel, R.M., Mustatea, G. (2023). Agricultural byproducts used as low-cost adsorbents for removal of potentially toxic elements from wastewater: a comprehensive review. Sustainability, 15(7): 5999. https://doi.org/10.3390/su15075999
  • 13. Escudero, L.B., Quintas, P.Y., Wuilloud, R.G., & Dotto, G.L. (2019). Recent advances on elemental biosorption. Environmental Chemistry Letters, 17, 409–427
  • 14. Mishra, S. (2023). Biomedical impact of heavy metal ions on human health. Int. J. Biochem. Physiol.8(1). https://doi.org/10.23880/ijbp-16000215
  • 15. Zhao, S., Sun, K., Xie, P., Zhang, S., Zhang, J., Zhu, Y., Sun, Z. (2024). Mercury Removal from Coal Combustion Flue Gas by S. XIE 18 Mechano-chemically Sulfur Modified Straw Coke and its Mercury Stability. Fuel 355, 129498. https://doi.org/10.1016/j.fuel.2023.129498
  • 16. Buhani, L., Dewi, J.S., Fajriyah, N.S., Rilyanti, M., Suharso, Sumadi, Elwakeel, K.Z. (2023). Modification of non-activated carbon from rubber fruit shells with 3-(Aminopropyl)- Triethoxysilane and its Adsorption Study on Coomassie Brilliant Blue and Methylene Blue in Solution. Water Air Soil Pollut. 234(9). https://doi.org/10.1007/s11270-023-06506-2
  • 17. Pohl, A. (2020). Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut. 231(10). https://doi.org/10. 1007/s11270-020-04863-w
  • 18. Fang, R., Dhakshinamoorthy, A., Li, Y., & Garcia, H. (2020). Metal organic frameworks for biomass conversion. Chemical Society Reviews, 49(11), 3638–3687.
  • 19. Liu, H., Zheng, Z., Qian, Z., Wang, Q., Wu, D., & Wang, X. (2021). Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest. Solar Energy Materials and Solar Cells, 229, 111140.
  • 20. Elanthamilan, E., Meena, B.C., Renuka, N., Santhiya, M., George, J., Kanimozhi, E.P., Ezhilarasi, J.C., & Merlin, J.P. (2021). Walnut shell derived mesoporous activated carbon for high performance electrical double layer capacitors. Journal of Electroanalytical Chemistry, 901, 115762.
  • 21. Singh, V., Singh, N., Rai, S.N., Kumar, A., Singh, A.K., Singh, M.P., Sahoo, A., Shekhar, S., Vamanu, E., Mishra, V. (2023). Heavy Metal contamination in the aquatic ecosystem: toxicity and its remediation using eco-friendly approaches. Toxics 11(2), 147. https://doi.org/10.3390/toxics11020147
  • 22. Samawi, M.Kh., Alsalihy, A.A., Suleiman, A.A. (2024). Use of Citrullus colocynthis callus for green synthesis of silver nanoparticles and their activity against biofilm-producing. Journal of Communicable Diseases, 56(2); 94–99.
  • 23. Li, S., Han, K., Li, J., Li, M., & Lu, C. (2017). Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous and Mesoporous Materials, 243, 291–300.
  • 24. Priya, A.K., Gnanasekaran, L., Dutta, K., Rajendran, S., Balakrishnan, D., & Soto-Moscoso, M. (2022). Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere, 307, 135957.
  • 25. Yildirim, A., Baran, M.F., & Acay, H. (2020). Kinetic and isotherm investigation into the removal of heavy metals using a fungal-extract-based bionanosorbent. Environmental Technology & Innovation, 20, 101076.
  • 26. Khan, N., Wahid. F., Sultana, Q., Saqib, N., Rahim M. (2020b). Surface oxidized and un-oxidized activated carbon derived from Ziziphus jujube Stem, and its application in removal of Cd (II) and Pb(II) from aqueous media. SN Applied Sciences. 2: 753.
  • 27. Mohammed, A., & Abdullah, A. (2018). Scanning electron microscopy (SEM): A review. Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 2018, 7–9.
  • 28. Tang, C.Y., and Yang, Z. (2017). Transmission electron microscopy (TEM). In Membrane characterization 145–159. Elsevier.
  • 29. Webster, R., & Lark, R.M. (2018). Analysis of variance in soil research: let the analysis fit the design. European Journal of Soil Science, 69(1), 126–139.
  • 30. Mavinkattimath, R.G., Shetty Kodialbail, V., & Srinikethan, G. (2023). Continuous fixed-bed adsorption of reactive azo dye on activated red mud for wastewater treatment-Evaluation of column dynamics and design parameters. Environmental Science and Pollution Research, 30(19), 57058–57075.
  • 31. Hegazy, G.E., Soliman, N.A., Ossman, M.E., Abdel-Fattah, Y.R., Moawad, M.N. (2023). Isotherm and kinetic studies of cadmium biosorption and its adsorption behaviour in multi-metals solution using dead and immobilized archaeal cells. Sci. Rep. 13(1). https://doi.org/10.1038/ s41598-023-29456-5
  • 32. Preethi, G., Jeyanthi, J. (2023). Biosorption of heavy metals using Gracilaria edulis seaweed – batch adsorption, kinetics and thermodynamic studies. Global NEST Journal. 25(10).
  • 33. Dodbiba, G. ergj, Ponou, J., & Fujita, T. (2015). Biosorption of heavy metals. Microbiology for Minerals, Metals, Materials and the Environment, 409–426. https://doi.org/10.4018/978-1-5225-8903-7.ch077
  • 34. Xu, S., Xing, Y., Liu, S., Hao, X., Chen, W., & Huang, Q. (2020). Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China. Chemosphere, 240, 124893.
  • 35. Chellaiah, E.R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied Water Science, 8(6), 154.
  • 36. Nacke, H., Gonçalves Jr, A.C., Campagnolo, M.A., Coelho, G.F., Schwantes, D., dos Santos, M.G., Briesch Jr, D.L., & Zimmermann, J. (2016). Adsorption of Cu (II) and Zn (II) from water by Jatropha curcas L. as biosorbent. Open Chemistry, 14(1), 103–117
  • 37. Shamsollahi, Z., & Partovinia, A. (2019). Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review. Journal of Environmental Management, 246, 314–323.
  • 38. Wibawa, P.J., Nur, M., Asy’ari, M., & Nur, H. (2020). SEM, XRD and FTIR analyses of both ultrasonic and heat generated activated carbon black microstructures. Heliyon, 6(3). e03546.
  • 39. Li, X., Xu, X., Zhou, Y., Lee, K.-R., & Wang, A. (2019). Insights into friction dependence of carbon nanoparticles as oil-based lubricant additive at amorphous carbon interface. Carbon, 150, 465–474.
  • 40. Al-Saadi, H.K., Awad, H.A., Saltan, Z.S., Hasoon, B.A., Abdulwahab, A.I., Al-Azawi, K.F., & Al-Rubaii, B.A. (2023). Antioxidant and antibacterial activities of allium sativum ethanol extract and silver nanoparticles: http://www.doi.org/10.26538/tjnpr/v7i6.5. Tropical Journal of Natural Product Research (TJNPR), 7(6), 3105–3110.
  • 41. Al-saidi, M., Al-Bana, R.J.A., Hassan, E., & Al-Rubaii, B.A.L. (2022). Extraction and characterization of nickel oxide nanoparticles from Hibiscus plant using green technology and study of its antibacterial activity. Biomedicine, 42(6), 1290–1295.
  • 42. Saleh, T.H., Hashim, S.T., Malik, S.N., & AL-Rubaii, B.A.L. (2019). Down-regulation of flil gene expression by Ag nanoparticles and TiO2 nanoparticles in pragmatic clinical isolates of Proteus mirabilis and Proteus vulgaris from urinary tract infection. Nano Biomed. Eng, 11(4), 321–332.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b3b5f31-0620-4598-bc33-ccae105bf472
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.