PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photocatalytic Self-cleaning Synergism Optimization of Cotton Fabric using Nano SrTiO3 and Nano TiO2

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja synergizmu fotokatalitycznego samooczyszczania tkanin bawełnianych poprzez zastosowanie nanocząstek SrTiO3 i TiO2
Języki publikacji
EN
Abstrakty
EN
Titanium dioxide (TiO2) and Strontium titanate (SrTiO3) are well-known photocatalysts. Today, the photocatalytic activity of dyes on fabrics has attracted much attention. Therefore in this study the photocatalytic activity of nano strontium titanate mixed with nano titania was examined while being coated on cotton fabric under UV irradiation at different nano material concentrations and various pHs. The Central Composite Design (CCD) was used for different variables based on Design Expert software. The crystal size and phase of nano titania and strontium titanate were characterised by XRD. The cotton fabrics stained with two common synthesised dyes were treated under 400 W UV irradiation for 30 hours and their self-cleaning properties were investigated by reflectance spectrophotometer. SEM photos show the pervasion of nano materials. The results show that samples treated with SrTiO3 and TiO2 have higher values of ΔE* as compared with those treated with TiO2 or SrTiO3 alone.
PL
Tytanian strontu SrTiO3 i dwutlenek tytanu TiO2 są dobrze znanymi fotokatalizatorami. Obecnie fotokatalityczna aktywność barwników w materiałach tekstylnych wzbudza ogólne zainteresowanie i dlatego w przedstawionych badaniach fotokatalityczna aktywność nanocząstek SrTiO3 zmieszanych z TiO2 i naniesionych na tkaninę bawełnianą badana była przy napromieniowaniu UV przy różnym stężeniu nanocząstek i różnym pH. W badaniach stosowano program Central Composite Design i Design Expert dla różnych zmiennych. Wielkości krystalitów i faza cząstek TiO2 i SrTiO3 były charakteryzowane za pomocą XRD. Tkaniny bawełniane barwione dwoma powszechnie stosowanymi barwnikami syntetycznymi były naświetlane promieniowaniem UV o mocy 400 W przez 30 godzin a następnie były badane ich właściwości samooczyszczające przy zastosowaniu spektrofotometru refleksyjnego. Zdjęcia SEM pokazują rozłożenie nanocząstek. Wyniki badań wykazały, że próbki zawierające TiO2 i SrTiO3 mają wyższe wartości ΔE* niż próbki zawierające tylko jeden rodzaj nanocząstek.
Rocznik
Strony
91--95
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
autor
  • Iran, Yazd, Islamic Azad University, Yazd Branch, Department of Textile Engineering
autor
  • Iran, Tehran, Islamic Azad University, Science and Research Branch, Young Researchers and Elites Club
autor
  • Iran, Yazd, Islamic Azad University, Yazd Branch, Art & Architectural Department,
Bibliografia
  • 1. Yan J-H, Zhu Y-R, Tang Y-G, Zheng S-Q. Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation. Journal of Alloys and Compounds 2009; 472: 429-433.
  • 2. Avudaithai M, Kutty TRN. Ultrafine powders of SrTiO3 from the hydrothermal preparation and their catalytic activity in the photolysis of water. Materials Research Bulletin 1987; 22, 5: 641-650.
  • 3. Karimi L, Zohoori S, Yazdanshenas ME. Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. Journal of Saudi Chemical Society 2011, doi:10.1016/j. jscs.2011.11.010.
  • 4. Lee S-J, Thiyagarajan P, Lee M-J. Synthesis and characterization of strontium titanate powder via a simple polymer solution route. Journal of ceramic processing research 2008; 9, 4: 385-388.
  • 5. Puangpetch T, Sreethawong T, Chavadej S, Yoshikawa S. Synthesis and Photocatalytic Activity in Methyl Orange Degradation of Mesoporous SrTiO3 Photocatalyst Prepared by Surfactant-assisted Templating Sol-Gel Method. In: The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006)”. E-056 (O) 1-23 November 2006, Bangkok, Thailand.
  • 6. Dubas ST, Kumlangdudsana P, Potiyaraj P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006; 289: 105-109.
  • 7. Starkova O, Yang J, Zhang Z. Application of time–stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Composites Science and Technology 2007; 67: 2691-2698.
  • 8. Watson S, Beydoun D, Scott J, Amal R. Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. Journal of Nanoparticle Research 2004; 6: 193-207.
  • 9. Boudali A, Driss Khodja M, Amrani B , Bourbie D, Amara K , Abada A. First-principles study of structural, elastic, electronic, and thermal properties of SrTiO3 perovskite cubic. Physics Letters A 2009; 373, 8-9: 879-884.
  • 10. Ríos S, Ruediger A, Jiang AQ, Scott JF, Lu H, Chen Z. Orthorhombic strontium titanate in BaTiO3-SrTiO3 Superlattices. Journal of Physics: Condensed Matter 2003; 15, 21: L305-L309.
  • 11. Simonsen ME, Jensen H, Li Z, Søgaard EG. Surface properties and photocatalytic activity of nanocrystalline titania films. Journal of Photochemistry and Photobiology A: Chemistry 2008; 200: 192-200.
  • 12. Yu J, Zhou M, Cheng B, Yu H, Zhao X. Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity. Journal of Molecular Catalysis A: Chemical 2005; 227, 1-2: 75-80.
  • 13. Zhang Q, Chakraborty AK, Lee WI. Preparation of titania nanotape array and its photocatalytic property. Journal of Physics and Chemistry of Solids 2008; 69, 5-6: 1450-1453.
  • 14. Wahi RK, Yu WW, Liu Y, Mejia ML, Falkner JC, Nolte W, Colvin VL. Photodegradation of Congo Red catalyzed by nanosized TiO2. Journal of Molecular Catalysis A: Chemical 2005; 242: 48-56.
  • 15. Subramanian V, Roeder RK, Wolf EE. Synthesis and UV-Visible-Light Photoactivity of Noble-Metal-SrTiO3 Composites. Industrial & Engineering Chemistry Research 2006; 45: 2187-2193.
  • 16. He HY. Comparison Study of Photocatalytic Properties of SrTiO3 and TiO2 Powders in Decomposition of Methyl Orange. International Journal of Environmental Research 2009; 3, 1: 57-60.
  • 17. Chang CA, Ray B, Paul DK, Demydov D, Klabunde KJ. Photocatalytic reaction of acetaldehyde over SrTiO3 nanoparticles. Journal of Molecular Catalysis A: Chemical 2008; 281, 1-2: 99-106.
  • 18. Wang G-Y, Qin Y, Cheng J, Wang Y-J. Influence of Zn doping on the photocatalytic property of SrTiO3. Journal of Fuel Chemistry and Technology 2010; 38, 4: 502-507.
  • 19. Jiao Z, Chen T, Xiong J, Wang T, Lu G, Ye J, Bi Y. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/ TiO2 heterostructured nanotube arrays. Scientific reports 2013; 3, doi:10.1038/ srep02720.
  • 20. Zhang H, Guashuai M, Xingping M, Bei W. Fabrication and Photocatalytic Property of One-Dimensional SrTiO3/ Nanostructures. International Journal of Photoenergy 2013. 21. Zhang X, Huo K, Hu L, Wu Z, Chu PK. Synthesis and photocatalytic activity of highly ordered TiO2 and SrTiO3/TiO2 nanotube arrays on Ti substrates. Journal of the American Ceramic Society 2010; 93, 9: 2771-2778.
  • 22. Ng J, Xu S, Zhang X, Yang HY, Sun DD. Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Advanced Functional Materials 2010; 20, 24: 4287-4294.
  • 23. Karimi L, Zohoori S. Superior photocatalytic degradation of azo dyes in aqueous solutions using TiO2/SrTiO3 nanocomposite. Journal of Nanostructure in Chemistry 2013; 3, 32.
  • 24. Cao T, Li Y, Wang C, Shao C, Liu Y. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 2011; 27, 6: 2946-2952.
  • 25. Chen C-C, Wang C-C. Crosslinking of cotton cellulose with succinic acid in the presence of titanium dioxide nanocatalyst under UV irradiation. Journal of Sol-Gel Science and Technology 2006; 40: 31-38.
  • 26. Meilert KT, Laub D, Kiwi J. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. Journal of Molecular Catalysis A: Chemical 2005; 237: 101-108.
  • 27. Karimi L, Mirjalili M, Yazdanshenas ME, Nazari A. Effect of Nano TiO2 on Selfcleaning Property of Cross-linking Cotton Fabric with Succinic Acid Under UV Irradiation. Photochemistry and photobiology 2010; 86, 5: 1030-1037.
  • 28. Zohoori S, Karimi L. Effect of nano SrTiO3 supporting nano TiO2 on selfcleaning of cotton fabric. Fibers and Polymers 2013; 14, 6: 996-1000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b36d610-5c4a-4f57-95bf-c82089ed5183
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.