Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
The use of insects in food industry – opportunities and threats
Języki publikacji
Abstrakty
Przewiduje się, że do 2050 r. populacja ludzka na świecie osiągnie 9 miliardów. Według szacunków WHO nawet 870 milionów ludzi może w tym czasie cierpieć z powodu niedożywienia wynikającego z braku żywności. Uwzględniając wpływ hodowli zwierząt na środowisko, w tym użytkowanie gruntów, emisję gazów cieplarnianych i zanieczyszczenie wody, zwiększenie produkcji nie jest zrównoważonym rozwiązaniem w przypadku zapotrzebowania na białko. Apeluje się aktualnie by poszukiwać alternatywnych źródeł białka, takich jak owady oraz przekształcać praktyki hodowlane oparte na zwierzętach rzeźnych na hodowlę owadów jadalnych. Owady można spożywać na wszystkie możliwe sposoby: smażone, pieczone, gotowane czy mielone. Obecnie dostępne na rynku są m.in. makaron, mąka, chrupiące przekąski czy pieczywo. Pomimo wielu zalet wynikających z wykorzystania owadów jako źródła białka i tłuszczu konieczne jest przeanalizowanie ryzyka wystąpienia niepożądanych reakcji pokarmowych, w tym reakcji alergicznych. Co więcej, owady mogą być skażone czynnikami antropogenicznymi podczas hodowli, pakowania lub przygotowywania do spożycia, jednak stwierdzane w badaniach ilości nie powinny stanowić zagrożenia dla zdrowia człowieka.
By 2050, the world’s human population is projected to reach 9 billion. According to WHO estimates, up to 870 million people may suffer from malnutrition resulting from lack of food during this time. Given the environmental impacts of livestock farming, including land use, greenhouse gas emissions and water pollution, increasing production is not a sustainable solution to protein. There is now a call to seek alternative sources of protein, such as insects and to convert farming practices based on slaughter animals into farming insects. Insects can be eaten in all possible ways: fried, baked, boiled or ground. Currently products available on the market include: pasta, flour, crispy snacks or bread. Despite the many advantages of using insects as a protein source, it is necessary to analyze the risk of adverse food reactions, including allergic reactions. Moreover, insects may be contaminated with anthropogenic factors during breeding, packing or preparing for consumption, but the amounts found in the research should not pose a threat to human health.
Wydawca
Czasopismo
Rocznik
Tom
Strony
46--53
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
autor
- Katedra Nauk o Zwierzętach Monogastrycznych, Pracownia Żywienia Zwierząt i Żywności, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
autor
- Katedra Nauk o Zwierzętach Monogastrycznych, Pracownia Żywienia Zwierząt i Żywności, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Bibliografia
- [1] Adámek M., A. Adámková, J. Mlček, M. Borkovcová, M. Bednářová. 2018. „Acceptability and sensory evaluation of energy bars and protein bars enriched with edible insect”. Potravinarstvo Slovak Journal of Food Sciences 12 : 431-437. DOI:10.5219/925.
- [2] Azzollini D., A. Derossi, V. Fogliano, C.M.M. Lakemond, C. Severini. 2018. „Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snacks”. Innovative Food Science & Emerging Technologies 45 : 344-353. DOI:10.1016/j.ifset.2017.11.017.
- [3] Barba F.J., L.R. Mariutti, N. Bragagnolo, A.Z. Mercadante, G.V. Barbosa-Canovas, V. Orlien. 2017. „Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing”. Trends in Food Science and Technology 67 : 195-206. DOI: 10.1016/j.tifs.2017.07.006.
- [4] Barre A., C. Pichereaux, M. Simplicien, O. Burlet-Schiltz, H. Benoist, P. Rougé. 2021. „A Proteomic- and bioinformatic-based identification of specific allergens from edible insects: probes for future detection as food ingredients”. Foods 10 : 280-298. DOI:10.3390/foods10020280.
- [5] Bartkowicz J., E. Babicz-Zielińska. 2020. „Acceptance of bars with edible insects by a selected group of students from Tri City, Poland”. Czech Journal of Food Sciences 38 : 192-197. DOI:10.17221/236/2019-CJFS.
- [6] Çabuk B., B. Yılmaz. 2020. „Fortification of traditional egg pasta (erişte) with edible insects: nutritional quality, cooking properties and sensory characteristics evaluation”. Journal of Food Science and Technology 57 : 2750-2757. DOI:10.1007/s13197-020-04315-7.
- [7] Calzada-Luna G., F.S. Martin-Gonzalez, L. Mauer, Liceaga A. 2021. „Cricket (Acheta domesticus) protein hydrolysates’ impact on the physicochemical, structural and sensory properties of tortillas and tortilla chips”. Journal of Insects as Food and Feed 7 : 109-120. DOI: 10.3920/JIFF2020.0010.
- [8] Camenzuli L., R. van Dam, T. de Rijk, R. Andriessen, J. van Schelt, H. van der Fels-Klerx. 2018. „Tolerance and excretion of the mycotoxins aflatoxin B1, zearalenone, deoxynivalenol, and ochratoxin A by Alphitobius diaperinus and Hermetia illucens from contaminated substrates”. Toxins 10 : 91-106. DOI:10.3390/toxins10020091.
- [9] Chakravorty J., S. Ghosh, V.B. Meyer-Rochow. 2011. „Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes, two ethnic groups of the state of Arunachal Pradesh (North East India)”. Journal of Ethnobiology and Ethno-medicine 7 : 1-14. DOI:10.1186/1746-4269-7-5.
- [10] Chakravorty J., S. Ghosh, V.B. Meyer-Rochow. 2013. „Comparative survey of ento-mophagy and entomotherapeutic practices in six tribes of Eastern Arunachal Pradesh (India)”. Journal of Ethnobiology and Ethnomedicine 9 : 1-12. DOI:10.1186/1746-4269-9-50.
- [11] Jiang C.L., W.Z. Jin, X.H. Tao, Q. Zhang, J. Zhu, S.Y. Feng, X.H., H.Y. Li, Z.H. Wang, Z.J. Zhang. 2019. „Black soldier fly larvae (Hermetia illucens) strengthen the metabolic function of food waste biodegradation by gut microbiome”. Microbial Biotechnolo-gy 12 : 528-543. DOI:10.1111/1751-7915.13393.
- [12] Cickova H., G.L. Newton, R.C. Lacy, M Kozanek. 2015. „The use of fly larvae for or-ganic waste treatment”. Waste Management 35 : 68-80. DOI:10.1016/j.wasman.2014.09.026.
- [13] Daub C.H., C. Gerhard. 2021. „How edible insects evolved from an infringement into a sustainable business model”. International Journal of Entrepreneurship 1 : 1-11. DOI:10.1177/14657503211030802.
- [14] Dicke M. 2018. „Insects as feed and the sustainable development goals”. Journal of Insects as Food and Feed 4 : 147-156. DOI:10.3920/jiff2018.0003.
- [15] EFSA. Panel on Nutrition, Novel Foods and Food Allergens (NDA). Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal 2021, 19 : e06343. DOI:10.2903/j.efsa.2021.6343.
- [16] Evans N.M., S. Shao. 2022. „Mycotoxin metabolism by edible insects”. Toxins 14 : 217-228. DOI:10.3390/toxins14030217.
- [17] Van Huis A., J. Van Itterbeeck, H. Klunder, E. Mertens, A. Halloran, G. Muir, P. Vantomme. 2013. FAO. Edible insects: future prospects for food and feed security. Forestry Paper. Rzym: Wageningen University & Research Centre.
- [18] Feng W.L., L. Qian, W.G. Wang, T.L. Wang, Z.K. Deng, F. Yang, J. Xiong, C.W. Wang. 2018. „Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (II) – extraction kinetics and thermodynamic”. Renewable Energy 119 : 12-18. DOI: 10.1016/j.renene.2017.11.076.
- [19] Fernandez-Cassi X., A. Supeanu, A. Jansson, S. Boqvist, I. Vagsholm. 2019. „Novel foods: a risk profile for the house cricket (Acheta domesticus)”. EFSA Journal 16 : e16082. DOI:10.2903/j.efsa.2018.e16082.
- [20] Finke M.D. 2008. Nutrient content of insects. Encyclopedia of Entomology. Niemcy: Springer.
- [21] Gahukar R.T. 2020. „Edible insects collected from forests for family livelihood and wellness of rural communities: A review”. Global Food Security 25 : 100348-100360. DOI:10.1016/j.gfs.2020.100348.
- [22] Gałęcki R., Ł. Zielonka, M. Zasępa, J. Gołębiowska, T. Bakuła. 2021. „Potential utilization of edible insects as an alternative source of protein in animal diets in Poland”. Frontiers in Sustainable Food Systems 5 : 1-8. DOI:10.3389/fsufs.2021.675796.
- [23] Hahn T., E. Tafi, A. Paul, R. Salvia, P. Falabella, S. Zibek. 2020. „Current state of chitin purification and chitosan production from insects”. Journal of Chemical Technology & Biotechnology 95 : 2775-2795. DOI:10.1002/jctb.6533.
- [24] Halonen V., V. Uusitalo, J. Levänen, J. Sillman, L. Leppäkoski, A. Claudelin. 2022. „Recognizing potential pathways to increasing the consumption of edible insects from the perspective of consumer acceptance: case study from Finland”. Sustainability 14 : 1439-1460. DOI:10.3390/su14031439.
- [25] Henriques B.S., E.S. Garcia, P. Azambuja, F.A. Genta. 2020. „Determination of chitin content in insects: an alternate method based on calcofluor staining”. Frontiers in Physiology 11 : 117-127. DOI: 10.3389/fphys.2020.00117.
- [26] Huang C., W. Feng, J. Xiong, T. Wang, W. Wang, C. Wang, F. Yang. 2019. „Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: Amino acid composition, nutritional value evalua-tion, in vitro digestibility, and thermal properties”. European Food Research and Technology 245 : 11-21. DOI: 10.1007/s00217-018-3136-y.
- [27] Jayanegara A., R. Gustanti, R. Ridwan, Y. Widyastuti. 2020. „Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methano-genesis”. Italian Journal of Animal Science 19 : 1310-1317. DOI:10.1080/1828051X.2020.1841571.
- [28] Jayanegara A., R.P. Haryati, A. Nafisah, P. Suptijah, M. Ridla, E.B. Laconi. 2020. „Derivatization of chitin and chitosan from black soldier fly (Hermetia illucens) and their use as feed additives: an in vitro study”. Advances in Animal and Veterinary Sci-ences 8 : 472-477. DOI: 10.17582/journal.aavs/2020/8.5.472.477.
- [29] Józefiak D., A. Józefiak, B. Kierończyk, M. Rawski, S. Świątkiewicz, J. Długosz, R.M. Engberg. 2016. „Insects – a natural nutrient source for poultry – a review”. Annals of Animal Science 16 : 297-313. DOI: 10.1515/aoas-2016-0010.
- [30] Kowalski S., A. Mikulec, B. Mickowska, M. Skotnicka, A. Mazurek. 2022. „Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects”. Lebensmittel-Wissenschaft & Tech-nologie 159 : 113220-113229. DOI:10.1016/j.lwt.2022.113220.
- [31] Kulma M., L. Kouřimská, V. Plachý, M. Božik, A. Adámková, V. Vrabec. 2019. „Effect of sex on the nutritional value of house cricket, Acheta domestica L.”. Food Chemistry 272 : 267-272. DOI:10.1016/j.foodchem.2018.08.049.
- [32] Liceaga A.M., J.E. Aguilar-Toalá, B. Vallejo-Cordoba, A.F. González-Córdova, A. Hernández-Mendoza. 2022. „Insects as an alternative protein source”. Annual Reviews of Food Science and Technology 25 : 19-34. DOI:10.1146/annurev-food-052720-112443.
- [33] Lopez-Santamarina A., A.D.C. Mondragon, A. Lamas, J.M. Miranda, C.M. Franco, A. Cepeda. 2020. „Animal-origin prebiotics based on chitin: an alternative for the future? A critical review”. Foods 9 : 782-802. DOI:10.3390/foods9060782.
- [34] Makkar H., G. Tran, V. Heuzé, P. Ankers. 2014. „State-of-the-art on use of insects as animal feed”. Animal Feed Science and Technology 197 : 1-33. DOI:10.1016/j.anifeedsci.2014.07.008.
- [35] Mancini S., G. Sogari, S. Espinosa Diaz, D. Menozzi, G. Paci, R. Moruzzo. 2022. „Ex-ploring the future of edible insects in Europe”. Foods 11 : 455-467. DOI:10.3390/foods11030455.
- [36] Manditsera F.A., P.A. Luning, V. Fogliano, C.M. Lakemond. 2019. „Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects”. Food Research International 121 : 404-411. DOI:10.1016/j.foodres.2019.03.052.
- [37] Matsuda N., K. Tanaka, Y. Watari, Y. Shintani, S.G. Goto, T. Nisimura, H. Numata. 2018. „Northward expansion of the bivoltine life cycle of the cricket over the last four decades”. Global Change Biology 24 : 5622-5628. DOI:10.1111/gcb.14436.
- [38] Mazzucchelli G., T. Holzhauser, T. Cirkovic Velickovic, A. DiazPerales, E. Molina, P. Roncada, P. Rodrigues, K. Verhoeckx, K. Hoffmann-Sommergruber. 2018. „Current (food) allergenic risk assessment: is it fit for novel foods? Status quo and identification of gaps”. Molecular Nutrition & Food Research 62 : 1-15. DOI:10.1002/mnfr.201700278.
- [39] Melse-Boonstra A. 2020. „Bioavailability of micronutrients from nutrient-dense whole foods: zooming in on dairy, vegetables, and fruits”. Frontiers in Nutrition 7 : 101-113. DOI:10.3389/fnut.2020.00101.
- [40] Meyer-Rochow V.B., R.T. Gahukar, S. Ghosh, C. Jung. 2021. „Chemical composition, nutrient quality and acceptability of edible insects are affected by species, develop-mental stage, gender, diet, and processing method”. Foods 10 : 1036-1072. DOI:10.3390/foods10051036.
- [41] Moruzzo R., S. Mancini, A. Guidi. 2021. „Edible insects and sustainable development goals”. Insects 12 : 557-566. DOI:10.3390/insects12060557.
- [42] Niermans K., J. Woyzichovski, N. Kröncke, R. Benning, R. Maul. 2019. „Feeding study for the mycotoxin zearalenone in yellow mealworm (Tenebrio molitor) larvae - investigation of biological impact and metabolic conversion”. Mycotoxin Research 35 : 231-242. DOI:10.1007/s12550-019-00346-y.
- [43] Nowakowski A.C., A.C. Miller, M.E. Miller, H. Xiao, X. Wu. 2022. „Potential health benefits of edible insects”. Critical Reviews in Food Science and Nutrition 62 : 3499-3508. DOI:10.1080/10408398.2020.1867053.
- [44] Ochoa Sanabria C., N. Hogan, K. Madder, C. Gillott, B. Blakley, M. Reaney, A. Beat-tie, F. Buchanan. 2019. „Yellow mealworm larvae (Tenebrio molitor) fed mycotoxin-contaminated wheat - a possible safe, sustainable protein source for animal feed?”. Toxins 11 : 282-295. DOI:10.3390/toxins11050282.
- [45] Ojha S., A. El-Din Bekhit, T. Grune, O.K. Schlüter. 2021. „Bioavailability of nutrients from edible insects”. Current Opinion in Food Science 41 : 240-248. DOI:10.1016/j.cofs.2021.08.003.
- [46] Oonincx D.G.A.B., I.J.M. de Boer. 2012. „Environmental impact of the production of mealworms as a protein source for humans – a life cycle assessment”. PLoS ONE 7 : 1-5. DOI:10.1371/journal.pone.0051145.
- [47] Orkusz A., W. Wolańska, J. Harasym, A. Piwowar, M. Kapelko. 2020. „Consumers’ attitudes facing entomophagy: Polish case perspectives”. International Journal of Envi-ronmental Research and Public Health 17 : 2427-2432. DOI:10.3390/ijerph17072427.
- [48] Pippinato L., L. Gasco, G. di Vita, T. Mancuso. 2020. „Current scenario in the european edible-insect industry: a preliminary study”. Journal of Insects as Food and Feed 6 : 371-381. DOI:10.3920/JIFF2020.0008.
- [49] Purschke B., R. Scheibelberger, S. Axmann, A. Adler, H. Jäger. 2017. „Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain”. Food Additives & Contaminants 34 : 1410-1420. DOI:10.1080/19440049.2017.1299946.
- [50] Ramos-Elorduy J., J.M. Pino Moreno, S.C. Correa. 1998. „Edible insects of the state of Mexico and determination of their nutritive values”. Zoologia 69 : 65-104.
- [51] Ribeiro J.C., B. Sousa-Pinto, J. Fonseca, S. Caldas Fonseca, L.M. Cunha. 2021. „Edible insects and food safety: allergy”. Journal of Insects as Food and Feed 7(5) : 833-847. DOI:10.3920/JIFF2020.0065.
- [52] Rozporządzenie Komisji (UE) 2017/893 z dnia 24 maja 2017 r. zmieniające załączniki I i IV do rozporządzenia (WE) nr 999/2001 Parlamentu Europejskiego i Rady oraz załączniki X, XIV i XV do rozporządzenia Komisji (UE) nr 142/2011 w odniesieniu do przepisów dotyczących przetworzonego białka zwierzęcego.
- [53] Rozporządzenie Komisji (UE) 2021/1372 z dnia 17 sierpnia 2021 r. zmieniające załącznik IV do rozporządzenia (WE) nr 999/2001 Parlamentu Europejskiego i Rady w odniesieniu do zakazu karmienia zwierząt gospodarskich innych niż przeżuwacze, innych niż zwierzęta futerkowe, z białkiem pochodzącym od zwierząt.
- [54] Rumpold B.A., O.K. Schluter. 2013. „Nutritional composition and safety aspects of edible insects”. Molecular Nutrition & Food Research 57 : 802-823. DOI:10.1002/mnfr.201200735.
- [55] Schmidt A., L.M. Call, L. Macheiner, H.K. Mayer. 2019. „Determination of vitamin B12 in four edible insect species by immunoaffinity and ultra-high performance liquid chromatography”. Food Chemistry 281 : 124-129. DOI:10.1016/j.foodchem.2018.12.039.
- [56] Simeon E.I.D., A.B. Danjuma, A. Momoh. 2022. „Effects of cricket addition on the chemical, functional, and sensory properties of complementary formulation from millet flour”. Turkish Journal of Agriculture - Food Science and Technology 10 : 508-516. DOI:10.24925/turjaf.v10i4.508-516.4414.
- [57] Smets R., B. Verbinnen, I. Van De Voorde, G. Aerts, J. Claes, M. Van Der Borght. 2020. „Sequential extraction and characterisation of lipids, proteins, and chitin from black soldier fly (Hermetia illucens) larvae, prepupae, and pupae”. Waste Biomass Valorization 11 : 6455-6466. DOI: 10.1007/s12649-019-00924-2.
- [58] Smil V. 2002. „Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins”. Proceedings of the Enzyme and Microbial Technology 30 : 305-311.
- [59] Soren A.D., K. Choudhury, P.J. Sapruna. 2021. „Nutrient and toxic heavy metal as-sessment of Tarbinskiellus portentosus and Schizodactylus monstrosus consumed by the Bodo tribe in Assam, India”. International Journal of Tropical Insect Science 41 : 2001-2006. DOI:10.1007/s42690-021-00439-1.
- [60] Tao J., G. Davidov-Pardo, B. Burns-Whitmore, E.M. Cullen, Y.O. Li. 2017. „Effects of edible insect ingredients on the physicochemical and sensory properties of extruded rice products”. Journal of Insects as Food and Feed 3 : 263-278. DOI:10.3920/jiff2017.0030.
- [61] Udomsil N., S. Imsoonthornruksa, C. Gosalawit, M. Ketudat-Cairns. 2019. „Nutritional values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus)”. Food Science and Technology Research 25 : 597-605. DOI:10.3136/fstr.25.597.
- [62] Vaga M., A. Berggren, A. Jansson. 2020. „Growth, survival and development of house crickets (Acheta domesticus) fed flowering plants”. Journal of Insects as Food and Feed 7 : 151-161. DOI:10.3920/JIFF2020.0048.
- [63] Verhoeckx K., H. Broekman, A. Knulst, G. Houben. 2016. „Allergenicity assessment strategy for novel food proteins and protein sources”. Regulatory Toxicology and Pharmacology 79 : 118-124. DOI:10.1016/j.yrtph.2016.03.016.
- [64] Wang C.W., L. Qian, W.K. Wang, T.L. Wang, Z.K. Deng, F. Yang, J. Xiong, W.L. Feng. 2017. „Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (I)”. Renewable Energy 111 : 749-756. DOI:10.1016/j.renene.2017.04.063.
- [65] Westerhout J., T. Krone, A. Snippe, L. Babe, S. McClain, G.S. Ladics, G.F. Houben, K.C. Verhoeckx. 2019.„Allergenicity prediction of novel and modified proteins: Not a mission impossible! Development of a random forest allergenicity prediction model”. Regulatory Toxicology and Pharmacology 107 : 1-11. DOI:10.1016/j.yrtph.2019.104422.
- [66] Zheng L., Y. Hou, W. Li, S. Yang, Q. Li, Z. Yu. 2012. „Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes”. Energy 47 : 225-229. DOI:10.1016/j.energy.2012.09.006.
- [67] Zielińska E., B. Baraniak, M. Karaś, K. Rybczyńska, A. Jakubczyk. 2015. „Selected species of edible insects as a source of nutrient composition”. Food Research International 77 : 460-466. DOI:10.1016/j.foodres.2015.09.008.
- [68] Zielińska E., U. Pankiewicz, M. Sujka. 2021. „Nutritional, Physiochemical, and biological value of muffins enriched with edible insects flour”. Antioxidants 10 : 1122-1139. DOI:10.3390/antiox10071122.
- [69] Żuk-Gołaszewska K., R. Gałęcki, K. Obremski, S. Smetana, S. Figiel, J. Gołaszewski. 2022. „Edible insect farming in the context of the EU regulations and marketing – an overview”. Insects 13 : 446-465. DOI:10.3390/insects13050446.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b3438b9-a495-489f-92d0-12dbb0474753