PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conversion of diesel engine to alternative bio-alcohol fuel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research has been carried out on feasibility of using biomethanol as a fuel in diesel engines converted for work on spirits, compared to usage of diesel fuel of petroleum origin. For realization of these tasks at Department of Automobile Transport in IFNTNG was converted for work on methanol automobile diesel engine of model XI7DTL OPEL. To convert the diesel engine to methanol compression strength of the engine was reduced to 14.1 by installing of additional gaskets under the head of cylinder block, an original microprocessor DIS ignition system of own design was installed, and engine management system was optimized. Experimental dependences of effective power and specific fuel consumption on the crankshaft rotational speed for the original diesel engine and converted for methanol diesel engine have been investigated. It is established that transferring diesel engine for work on methanol it is possible to achieve power indexes of original one. Analysis of exhaust gases during transferring of diesel engine to work on methanol shows that in all modes of engine there is a significant reduction in emissions of nitrogen oxides and carbon monoxide.
Rocznik
Strony
123--131
Opis fizyczny
Bibliogr. 18 poz., fot., rys., wykr.
Twórcy
  • Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
Bibliografia
  • [1] Thompson NA (2018), Biofuels are (Not) the Future Legitimation Strategies of Sustainable Ventures in Complex Institutional Environments. Sustainability. 10 (5), 1382.
  • [2] Taheripour F., Zhao X., Tyner W. E. (2017), The impact of considering land intensification and updated data on biofuels land use change and emissions estimates. Biotechnology for Biofuels. 10(1), 1-16.
  • [3] Ai B., Chi X., Meng J., Sheng Z., Zheng L., Zheng X., Li J. (2016), Consolidated bioprocessing for butyric acid production from rice straw with undefined mixed culture. Frontiers in Microbiology. 7.
  • [4] German L., Schoneveld G. C., Pacheco P. (2011), The Social and Environmental Impacts of Biofuel Feedstock Cultivation: Evidence from Multi-Site Research in the Forest Frontier. Ecology and Society. 16 (3), 24.
  • [5] Yves S., Diamantis A., Stephane F. (2013), Catalyst technology for biofuel production: Conversion of renewable lipids into biojet and biodiesel. Oilseeds and fats, crops and lipids. 20 (5), 502.
  • [6] Haas M. I., Wagner K. (2011), Simplifying biodiesel production: the direct or in situ transesterification of algal biomass. Eur. J. Lipid Sci. Technol. 113, 1219-1229.
  • [7] Nascimento I. A, Marques S. S .I., Cabanelas I. T. D., Pereira S. A, Druzian J. I., de Souza C. O. (2013), Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenerg. Res. 6, 1-13.
  • [8] Behera S., Singh R., Arora R., Sharma N., Shukla M., Kumar S. (2015), Scope of algae as third generation biofuels, 2, 90.
  • [9] Afify, A. M. M., Shanab, S. M., and Shalaby, E. A. (2010). Enhancement of biodiesel production from different species of algae. Grasas y Aceites 61, 416-422.
  • [10] Chen C. Y., Zhao X. Q., Yen H. W., Ho S .H., Cheng C. L., Bai F. (2013), Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78, 1-10.
  • [11] Ho S. H., Chen C. Y., Lee D J., Chang J. S. (2011), Perspectives on microalgal Co2-emission mitigation systems-a review. Biotechnol. Adv. 29, 189-198.
  • [12] Brewer P. J., Brown R. J. C., Keates A. C. (2010), Sensitivities of a Standard Test Method for the Determination of the pHe of Bioethanol and Suggestions for Improvement. Sensors. 10 (11), 9982-9993.
  • [13] Mukherjee V., Radecka D., Aerts G., Verstrepen K. J., Lievens B., Thevelein J. M. (2017), Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnology for Biofuels. 10 (1), 1-19.
  • [14] Branco R.H.R., Serafim L. S., Xavier A.M.R.B. (2018), Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock Fermentation. 5 (1), 4.
  • [15] Kim, I-Tae, Yoo, Young-Seok, Yoon, Young-Han, Lee, Ye-Eun, Jo, Jun-Ho, Jeong, W., Kim Kwang-Soo. (2018), Bio-Methanol Production Using Treated Domestic Wastewater with Mixed Methanotroph Species and Anaerobic Digester Biogas. Water. 10 (10), 1414.
  • [16] Duque A., Manzanares P., González A., Ballesteros M. (2018), Study of the Application of Alkaline Extrusion to the Pretreatment of Eucalyptus Biomass as First Step in a Bioethanol Production Process. Energies. 11 (11), 2961.
  • [17] Rujiroj T., Rujira J., Tarawipa P., Weerawat P., Kamonrat L. (2018), Kinetic modeling and simulation of biomethanol process from biogas by using aspen plus. MATEC Web of Conferences. 192, 3030.
  • [18] Bharadwaz Y. D., Rao B. G., Rao V. D., Anusha C. (2016), Improvement of biodiesel methanol blends. Alexandria Engineering Journal. 55 (2), 1201-1209.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b3110fe-4d7d-46d2-bb4c-7edc74ed160d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.