PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear nonlocal theory

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractional derivative models (FDMs) result from introduction of fractional derivatives (FDs) into the governing equations of the differential operator type of linear solid materials. FDMs are more general than those of integer derivative models (IDMs) so they are more fixable to describe physical phenomena. In this paper the inhomogeneous nonlocal theory has been introduced based on conformable fractional derivatives (CFD) to study the critical point instability of micro/nano beams under a distributed variable-pressure force. The phase of distributed variable-pressure force is used for electrostatic force, electromagnetic force and so on. This model has two free parameters: i) parameter to control the order of inhomogeneity in constitutive relations that gives a general form to the model, and ii) a nonlocal parameter to consider size dependence effects in micron and sub-micron scales. As a case study the theory has been used to model micro cantilever (C-F) and doubly-clamped (C-C) silicon beams under a distributed uniform electrostatic force in the presence of von-Karman nonlinearity and their static critical point (static pull-in instability), moreover, effects of different inhomogeneity have been shown on the pull-in instability.
Rocznik
Strony
413--433
Opis fizyczny
Bibliogr. 45 poz., rys. kolor.
Twórcy
autor
  • Mechanical Engineering Department Urmia University Urmia, Iran
autor
  • Mechanical Engineering Department Urmia University Urmia, Iran
autor
  • Institute of Structural Engineering Poznań University of Technology Piotrowo 5 60-965 Poznań, Poland
autor
  • School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou 221116, China
  • State Key Laboratory for Geomechanics and Deep Underground Engineering China University of Mining and Technology Xuzhou 221116, China
Bibliografia
  • 1. M. Baghani, Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory, International Journal of Engineering Science, 54, 99–105, 2012.
  • 2. M. Heidari, Y.T. Benii, H. Homaei, Estimation of static pull-in instability voltage of geometrically nonlinear Euler-Bernoulli microbeam based on modified couple stress theory by artificial neural network model, Advances in Artificial Neural Systems, 2013, Article ID 741896, 10 pages, 2013.
  • 3. M. Rahaeifard, M.H. Kahrobaiyan, M. Asghari, M.T Ahmadian, Static pull-in analysis of microcantilevers based on the modified couple stress theory, Sensors and Actuators A: Physical, 171, 2, 370–374, 2011.
  • 4. M. Fathalilou, M. Sadeghi, G. Rezazadeh, M. Jalilpour, A. Naghilou, S. Ahouighazvin, Study on the pull-in instability of gold micro-switches using variable length scale parameter, Journal of Solid Mechanics, 3, 2, 114–123, 2011.
  • 5. B. Abbasnejad, G. Rezazadeh, R. Shabani, Stability analysis of a capacitive fgm micro-beam using modified couple stress theory, Acta Mechanica Solida Sinica, 26, 4, 427–440, 2013.
  • 6. I. Jafar Sadeghi-Pournaki, M.R. Zamanzadeh, H. Madinei, G. Rezazadeh, Static pull-in analysis of capacitive FGM nanocantilevers subjected to thermal moment using Eringen’s nonlocal elasticity, International Journal of Engineering-Transactions A: Basics, 27, 4, 633–642, 2013.
  • 7. M. Zamanzadeh, G. Rezazadeh, I. Jafarsadeghi-Pournaki, R. Shabani, Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes, Applied Mathematical Modelling, 37, 10, 6964–6978, 2013.
  • 8. J. Yang, X.L. Jia, S. Kitipornchai, Pull-in instability of nano-switches using nonlocal elasticity theory, Journal of Physics D: Applied Physics, 41, 3, 035103, 2008.
  • 9. M.T. Ahmadian, A. Pasharavesh, A. Fallah, Application of nonlocal theory in dynamic pull-in analysis of electrostatically actuated micro and nano beams, [in:] ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, Paper No. DETC2011-48862, pp. 255–261, 2011.
  • 10. J.A. Ruud, T.R. Jervis, F. Spaepen, Nanoindentation of Ag/Ni multilayered thin films, Journal of Applied Physics, 75, 4969–4974, 1994.
  • 11. R. Chowdhury, S. Adhikari, C.W. Wang, F. Scarpa, A molecular mechanics approach for the vibration of single walled carbon nanotubes, Computational Materials Science, 48, 730–735, 2010.
  • 12. T. Murmu, S.C. Pradhan, Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity, Journal of Applied Physics, 106, 104301, 2009.
  • 13. A.C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering Science, 10, 1, 1–16, 1972.
  • 14. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 4703, 1983.
  • 15. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, International Journal of Engineering Science,10, 3, 233–248, 1972.
  • 16. N. Challamel, D. Zorica, T.M. Atanacković, D.T. Spasić, On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation, Comptes Rendus Mécanique, 341, 3, 298–303, 2013.
  • 17. W. Sumelka, R. Zaera, J. Fernández-Sáez, One-dimensional dispersion phenomena in terms of fractional media, The European Physical Journal – Plus, 131, 320, 2016.
  • 18. W. Sumelka, Thermoelasticity in the framework of the fractional continuum mechanics, Journal of Thermal Stresses, 37, 6, 678–706, 2014.
  • 19. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • 20. D.D. Demir, N. Bildik, B. G.Sinir, Application of fractional calculus in the dynamics of beams, Boundary Value Problems, 2012, 135, 2012.
  • 21. K.A Lazopoulos, Non-local continuum mechanics and fractional calculus, Mech. Res. Comm., 33, 6, 753–757, 2006.
  • 22. G. Cottone, M. Di Paola, M. Zingales, Elastic waves propagation in 1D fractional non-local continuum, Physica E: Low-dimensional Systems and Nanostructures, 42, 2, 95–103, 2009.
  • 23. T.M. Atanackovic, B. Stankovic, Generalized wave equation in nonlocal elasticity, Acta Mechanica, 208, 1–2, 1–10, 2009.
  • 24. A. Carpinteri, P. Cornetti, A. Sapora, A fractional calculus approach to nonlocal elasticity, The European Physical Journal-Special Topics, 193, 1, 193–204, 2011.
  • 25. T.M. Michelitsch, The self-similar field and its application to a diffusion problem, Journal of Physics A: Mathematical and Theoretical, 44, 46, 465206, 2011.
  • 26. T.M. Michelitsch, G.A. Maugin, M. Rahman, S. Derogar, A.F. Nowakowski, F.C. Nicolleau, An approach to generalized one-dimensional self-similar elasticity, International Journal of Engineering Science, 61, 103–111, 2012.
  • 27. W. Sumelka, Non-local Kirchhoff–Love plates in terms of fractional calculus, Archives of Civil and Mechanical Engineering, 15, 1, 231–242, 2015.
  • 28. Z. Rahimi, W. Sumelka, X.J. Yang, Linear and non-linear free vibration of nano beams based on a new fractional non-local theory, Engineering Computations, 34, 5, 1754–1770, 2017.
  • 29. M.D. Ortigueira, J.A.T. Machado, "What is a fractional derivative?", Journal of computational Physics, 293, 4–13, 2015.
  • 30. E.C. Oliveira, J.A.T. Machado, A review of definitions for fractional derivatives and integral, Mathematical Problems in Engineering, Article ID 238459, 6 pages, 2014.
  • 31. X.J. Yang, D. Baleanu, H.M. Srivastava, Local Fractional Integral Transforms and Their Applications, Academic Press, 2015.
  • 32. X.J. Yang, H.M. Srivastava, J.A.T. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Thermal Science, 20, 2, 753–756, 2016.
  • 33. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65–70, 2014
  • 34. I. Abu Hammad, R. Khalil, Fractional Fourier series with applications, Am. J. Comput. Appl. Math., 4, 6, 187–191, 2014.
  • 35. T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57–66, 2015.
  • 36. A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Mathematics, 13, 1, 1–10, 2015.
  • 37. O.S. Iyiola, E.R. Nwaeze, Some new results on the new conformable fractional calculus with application using D’Alambert approach, Progr. Fract. Differ. Appl., 2, 2, 1–7, 2016.
  • 38. A.S. Vahdat, G. Rezazadeh, Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators, Journal of the Franklin Institute, 348, 4, 622–639, 2011.
  • 39. G. Rezazadeh, A. Tahmasebi, M. Zubstov, Application of piezoelectric layers in electrostatic MEMactuators: Controlling of pull-in voltage, Microsystem Technologies, 12, 12, 1163–1170, 2006.
  • 40. F. Vakili-Tahami, H. Mobki, A. Keyvani-Janbahan, G. Rezazadeh, Pull-in phenomena and dynamic response of a capacitive nano-beam switch, Sensors & Transducers Journal, 109, 10, 26–37, 2009.
  • 41. M. SoltanRezaee, M. Farrokhabadi, M.R Ghazavi, The influence of dispersion forces on the size-dependent pull-in instability of general cantilever nano-beams containing geometrical non-linearity, International Journal of Mechanical Sciences, 119, 114–124, 2016.
  • 42. T. Mousavi, S. Bornassi, H. Haddadpour, The effect of small scale on the pull-in instability of nano-switches using DQM, International Journal of Solids and Structures, 50, 1193–1202, 2013.
  • 43. T. Murmu, S. Adhikari, Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems, European Journal of Mechanics-A/Solids, 34, 52–62, 2012.
  • 44. H. Rokni, R.J. Seethaler, A.S. Milani, S. Hosseini-Hashemi, X.F. Li, Analytical closed-form solutions for size-dependent static pull-in behaviour in electrostatic micro-actuators via Fredholm integral equation, Sensors and Actuators A: Physical, 190, 32–43, 2013.
  • 45. P.M. Osterberg, Electrostatically actuated microelectromechanical test structures for material property measurement, Ph.D. Dissertation, Massachusetts Institute of Technology, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b301dd3-6bc1-403c-8562-c68383d0d0a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.