PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Eulerian current, Stokes drift and wind while simulating surface drifter trajectories in the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The simulation of Lagrangian drift is an important task in applications such as dispersion of pollutants, larvae and search and rescue activities. In this study, the Eulerian current, Stokes drift and wind effect on the simulation of observed drifters were analysed. The Lagrangian OceanParcels model was used, and the surface trajectories were assessed by comparison with 9 GPS drifter trajectories in the Gulf of Finland, Gulf of Riga and Lithuanian coast. The Normalised Cumulative Lagrangian Separation (NCLS) distance between the simulated and the satellite-tracked drifter trajectories, and the mean absolute error (MAE) were used as comparison metrics. The present study suggests the need to consider the Stokes drift and the wind factor in addition to the modelled Eulerian currents to obtain a better description of the trajectories of particles. By making these considerations, the OceanParcels model could adequately simulate particle trajectories in the sub-basins within the Baltic Sea. The realized model tests showed that motion of surface drifters are strongly controlled by the Stokes drift when the significant wave height is >1 m, whereas the wind component and the Eulerian currents are crucial when the significant wave height is <0.6 m or the wave (Stokes drift) directions do not match the wind direction.
Czasopismo
Rocznik
Strony
453--465
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • European Commission, Joint Research Centre, Ispra, Varese, Italy
  • SRI Center for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
  • European Commission, Joint Research Centre, Ispra, Varese, Italy
autor
  • Department of Marine Systems, School of Science, Tallinn University of Technology, Tallinn, Estonia
autor
  • European Commission, Joint Research Centre, Ispra, Varese, Italy
  • Geophysical Institute, University of Bergen, Bergen, Norway
Bibliografia
  • 1. Alari, V., Van Vledder, G.P., 2013. Spatial variability of directional misalignment between waves and wind in the Baltic Sea-model study. In: Measurements. 13th International Workshop on Wave Hindcasting and Forecasting, 4th Coastal Hazard Symposium, Banff, Canada, 16 pp.
  • 2. Andrady, A.L., 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62 (8), 1596-1605.
  • 3. Burchard, H., Bolding, K., 2002. GETM. A general estuarine transport model, Scientific documentation, JRC EUR Report 20253EN.
  • 4. Chiba, S., Saito, H., Fletcher, R., Yogi, T., Kayo, M., Miyagi, S., Ogido, M., Fujikura, K., 2018. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Mar. Policy 96, 204-212. https://doi.org/10.1016/j.marpol.2018.03.022
  • 5. Corell, H., Moksnes, P.O., Engqvist, A., Döös, K., Jonsson, P.R., 2012. Depth distribution of larvae critically affects their dispersal and the efficiency of marine protected areas. Mar. Ecol. Prog. Ser. 467, 29-46. https://doi.org/10.3354/meps09963
  • 6. Davulien˙e, L., Kelpšaite, L., Dailidiene, I., 2014. Surface drifters experiment in the south-eastern part of the Baltic Sea. Baltica (2). https://doi.org/10.5200/baltica.2014.27.24
  • 7. Delandmeter, P., Sebille, E., 2019. The parcels v2.0 Lagrangian framework: new field interpolation schemes. Geosci. Model Dev. 12 (8), 3571-3584. https://doi.org/10.5194/gmd-12-3571-2019
  • 8. Delpeche-Ellmann, N., Giudici, A., Rätsep, M., Soomere, T., 2021. Observations of surface drift and effects induced by wind and surface waves in the Baltic Sea for the period 2011-2018. Estuar. Coast. Shelf Sci. 249, 107071. https://doi.org/10.1016/j.ecss.2020.107071
  • 9. Delpeche-Ellmann, N., Torsvik, T., Soomere, T., 2016. A comparison of the motions of surface drifters with offshore wind properties in the Gulf of Finland, the Baltic Sea. Estuar. Coast. Shelf Sci. 172, 154-164. https://doi.org/10.1016/j.ecss.2016.02.009
  • 10. Edwards, K.P., Werner, F.E., Blanton, B.O., 2006. Comparison of observed and modeled drifter trajectories in coastal regions: an improvement through adjustments for observed drifter slip and errors in wind fields. J. Atmos. Ocean. Technol. 23 (11), 1614-1620.
  • 11. Eelsalu, M., Org, M., Soomere, T., 2014. Visually observed wave climate in the Gulf of Riga. In: 2014 IEEE/OES Baltic International Symposium (BALTIC), 1-10.
  • 12. Gästgifvars, M., Lauri, H., Sarkanen, A., Myrberg, K., Andrejev, O., Ambjörn, C., 2006. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci. 70 (4), 567-576. https://doi.org/10.1016/j.ecss.2006.06.010
  • 13. Giudici, A., Kalda, J., Soomere, T., 2019. Generation of large pollution patches via collisions of sticky floating parcels driven by wind and surface currents. Mar. Pollut. Bull. 141, 573-585. https://doi.org/10.1016/j.marpolbul.2019.02.039
  • 14. Griffa, A., Piterbarg, L.I., Ozgokmen, T., 2004. Predictability of Lagrangian particle trajectories: effects of smoothing of the underlying Eulerian flow. J. Mar. Res. 62 (1), 1-35. https://doi.org/10.1357/00222400460744609
  • 15. HELCOM, 2009. Ensuring safe shipping in the Baltic. Helsinki Commission, Helsinki, 20 pp.
  • 16. Liblik, T., Lips, U., 2017. Variability of pycnoclines in a three-layer, large estuary: the Gulf of Finland. Boreal Environ. Res. 22, 27-47. https://doi.org/10.5194/os-8-603-2012
  • 17. Lilover, M.-J., Pavelson, J., Kõuts, T., Leppäranta, M., 2018. Characteristics of high-resolution sea ice dynamics in the Gulf of Finland, Baltic Sea. Boreal Env. Res. 23, 175-191.
  • 18. Lindgren, E., Tuomi, L., Huess, V., 2021. Baltic Sea Wave Hindcast, CMEMS-BAL-PUM-003-015. https://doi.org/10.48670/moi-00014
  • 19. Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents. Cont. Shelf Res. 112, 1-13. https://doi.org/10.5194/bg-2021-160
  • 20. Mackas, D.L., Crawford, W.R., Niiler, P.P., 1989. A performance comparison for two Lagrangian drifter designs. Atmos.-Ocean 27 (2), 443-456. https://doi.org/10.1080/07055900.1989.9649346
  • 21. Miron, P., Olascoaga, M.J., Beron-Vera, F.J., Putman, N.F., Triñanes, J., Lumpkin, R., Goni, G.J., 2020. Clustering of marine-debris- and Sargassum-like drifters explained by inertial particle dynamics. Geophys. Res. Lett. 47 (19), e2020GL089874. https://doi.org/10.1029/2020GL089874
  • 22. Murawski, J., Woge Nielsen, J., 2013. Applications of an oil drift and fate model for fairway design. In: Soomere, T., Quak, E. (Eds.), Preventive Methods for Coastal Protection: Towards the Use of Ocean Dynamics for Pollution Control. Springer, Cham, 367-415. https://doi.org/10.1007/978-3-319-00440-2_11
  • 23. Myrberg, K., Ryabchenko, V., Isaev, A., Vankevich, R., Andrejev, O., Bendtsen, J., Erichsen, A., Funkquist, L., Inkala, A., Neelov, I., Rasmus, K., Medina, M.R., Raudsepp, U., Passenko, J., Soderkvist, J., Sokolov, A., Kuosa, H., Anderson, T.R., Lehmann, A., Skogen, M.D., 2010. Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six model ensemble. Boreal Environ. Res. 15, 453-479.
  • 24. Myrberg, K., Soomere, T., 2013. The Gulf of Finland, its hydrography and circulation dynamics, Preventive Methods for Coastal Protection. Springer, Heidelberg, 181-222. https://doi.org/10.1007/978-3-319-00440-2_6
  • 25. Pärn, O., Friedland, R., Rjazin, J., Stips, A., 2021b. Regime shift in sea-ice characteristics and impact on the spring bloom in the Baltic Sea. Oceanologia 64 (2), 181-222. https://doi.org/10.1016/j.oceano.2021.12.004
  • 26. Pärn, O., Lessin, G., Stips, A., 2021a. Effects of sea ice and wind speed on phytoplankton spring bloom in central and southern Baltic Sea. PloS One 16 (3), e0242637. https://doi.org/10.1371/journal.pone.0242637
  • 27. Soomere, T., Myrberg, K., Lepparanta, M., Nekrasov, A., 2008. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997-2007. Oceanologia 50 (3), 287-362.
  • 28. Soomere, T., Viidebaum, M., Kalda, J., 2011. On dispersion properties of surface motions in the Gulf of Finland. Proc. Est. Acad. Sci. 60 (4), 269. https://doi.org/10.3176/proc.2011.4.07
  • 29. Soosaar, E., Maljutenko, I., Raudsepp, U., Elken, J., 2014. An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period. Cont. Shelf Res. 78, 75-84. https://doi.org/10.1016/j.csr.2014.02.009
  • 30. Stips, A., Bolding, K., Pohlmann, T., Burchard, H., 2004. Simulating the temporal and spatial dynamics of the North Sea using the new model GETM (general estuarine transport model). Ocean Dynam. 54 (2), 266-283. https://doi.org/10.1007/s10236-003-0077-0
  • 31. Tamtare, T., Dumont, D., Chavanne, C., 2021. The stokes drift in ocean surface drift prediction. J. Oper. Oceanogr. 15 (3), 1-13. https://doi.org/10.5194/egusphere-egu2020-9752
  • 32. Torsvik, T., 2016. Data processing and performance testing of a low cost surface drifter design for use in coastal waters. Proc. Est. Acad. Sci. 65 (1), 58. https://doi.org/10.3176/proc.2016.1.06
  • 33. Tuomi, L., Vähä-Piikkiö, O., Alenius, P., Björkqvist, J.V., Kahma, K.K., 2018. Surface Stokes drift in the Baltic Sea based on modelled wave spectra. Ocean Dynam. 68 (1), 17-33. https://doi.org/10.1007/s10236-017-1115-7
  • 34. Umlauf, L., Burchard, H., 2005. Second-order turbulence closure models for geophysical boundary layers: a review of recent work. Cont. Shelf Res. 25 (7-8), 795-827.
  • 35. van Sebille, E., Aliani, S., Law, K.L., Maximenko, N., Alsina, J.M., Bagaev, A., et al., 2020. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15 (2), 023003. https://doi.org/10.1088/1748-9326/ab6d7d
  • 36. Vandenbulcke, L., Beckers, J.-M., Lenartz, F., Barth, A., Poulain, P.-M., Aidonidis, M., Meyrat, J., Ardhuin, F., Tonani, M., Fratianni, C., Torrisi, L., Pallela, D., Chiggiato, J., Tudor, M., Book, J.W., Martin, P., Peggion, G., Rixen, M., 2009. Superensemble techniques: Application to surface drift prediction. Prog. Oceanogr. 82 (3), 149-167. https://doi.org/10.1016/j.pocean.2009.06.002
  • 37. Väli, G., Meier, M., Dieterich, C., Placke, M., 2019. River runoff forcing for ocean modeling with in the Baltic sea model intercomparison project. Leibniz-Institut für Ostseeforschung Warnemünde. https://doi.org/10.12754/msr-2019-0113
  • 38. Verjovkina, S., Raudsepp, U., Kõuts, T., Vahter, K., 2010. Validation of Seatrack Web Using surface drifters in the Gulf of Finland and Baltic Proper. In: 2010 IEEE/OES Baltic International Symposium (BALTIC). IEEE, 1-8. https://doi.org/10.1109/BALTIC.2010.5621634
  • 39. Viikmäe, B., Soomere, T., 2018. The persistence of spatial patterns of beaching of current-driven pollution in a changing wind climate: a case study for the Gulf of Finland. Boreal Environ. Res. 23, 299-314.
  • 40. Yurkovskis, A., Wulff, F., Rahm, L., Andruzaitis, A., Rodriguez-Medina, M., 1993. A nutrient budget of the Gulf of Riga; Baltic Sea. Estuar. Coast. Shelf Sci. 37 (2), 113-127. https://doi.org/10.1006/ecss.1993.1046
  • 41. Zhang, H., 2017. Transport of microplastics in coastal seas. Estuar. Coast. Shelf Sci. 199, 74-86. https://doi.org/10.1016/j.ecss.2017.09.032
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b2f407e-166d-4f68-beca-59d2c1c53743
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.