PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonexistence of global solutions for a nonlinear parabolic equation with a forcing term

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this work is to analyze the blow-up of solutions of a nonlinear parabolic equation with a forcing term depending on both time and space variables ut − Δu = |x|α|u|p + a(t)w(x) for (t, x) ∈ (0,∞) × RN, where α ∈ R, p > 1, and a(t) as well as w(x) are suitable given functions. We generalize and somehow improve earlier existing works by considering a wide class of forcing terms that includes the most common investigated example tσ w(x) as a particular case. Using the test function method and some differential inequalities, we obtain sufficient criteria for the nonexistence of global weak solutions. This criterion mainly depends on the value of the limit lim [formula]. The main novelty lies in our treatment of the nonstandard condition on the forcing term.
Rocznik
Strony
741--758
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
  • Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
autor
  • Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
  • Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
  • Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
  • Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
autor
  • Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
  • Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
  • Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
  • Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
Bibliografia
  • [1] D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), 33–76.
  • [2] C. Bandle, H.A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc. 316 (1989), no. 2, 595–624.
  • [3] C. Bandle, H.A. Levine, Qi S. Zhang, Critical exponents of Fujita type for inhomogeneous parabolic equations and systems, J. Math. Anal. Appl. 251 (2000), no. 2, 624–648.
  • [4] K. Deng, H.A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), 85–126.
  • [5] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = Δu + u1+α, J. Fac. Sci. Univ. Tokyo Sec. IA Math. 13 (1966), 109–124.
  • [6] H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., vol. XVIII, Part 1, Chicago, Ill., 1968), pp. 105–113, Amer. Math. Soc., Providence, R.I., 1970.
  • [7] V.A. Galaktionov, J.L. Vázquez, The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst. 8 (2002), 399–433.
  • [8] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), no. 7, 503–505.
  • [9] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin–New York, 1981.
  • [10] B. Hu, Blow Up Theories for Semilinear Parabolic Equations, Springer, Berlin, 2011.
  • [11] M. Jleli, T. Kawakami, B. Samet, Critical behavior for a semilinear parabolic equation with forcing term depending of time and space, J. Math. Anal. Appl. 486 (2020), no. 2, 123931.
  • [12] A.G. Kartsatos, V.V. Kurta, On the critical Fujita exponents for solutions of quasilinear parabolic inequalities, J. Math. Anal. Appl. 269 (2002), no. 1, 73–86.
  • [13] A.G. Kartsatos, V.V. Kurta, On blow-up results for solutions of inhomogeneous evolution equations and inequalities, J. Math. Anal. Appl. 290 (2004), no. 1, 76–85.
  • [14] A.G. Kartsatos, V.V. Kurta, On a Liouville-type theorem and the Fujita blow-up phenomenon, Proc. Amer. Math. Soc. 132 (2004), 807–813.
  • [15] A.G. Kartsatos, V.V. Kurta, On blow-up results for solutions of inhomogeneous evolution equations and inequalities. II, Differential Integral Equations 18 (2005), 1427–1435.
  • [16] K. Kobayashi, T. Siaro, H. Tanaka, On the blowing up problem for semilinear heat equations, J. Math. Soc. Japan 29 (1977), 407–424.
  • [17] H.A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990), no. 2, 262–288.
  • [18] H.A. Levine, P. Meier, The value of the critical exponent for reaction-diffusion equations in cones, Arch. Rational Mech. Anal. 109 (1989), no. 1, 73–80.
  • [19] M. Majdoub, Well-posedness and blow-up for an inhomogeneous semilinear parabolic equation, Differ. Equ. Appl. 13 (2021), no. 1, 85–100.
  • [20] M. Majdoub, On the Fujita exponent for a Hardy-Hénon equation with a spatial-temporal forcing term, La Matematica (2023).
  • [21] R.H. Martin, M. Pierre, Nonlinear reaction-diffusion systems, Math. Sci. Eng. 185 (1992), 363–398.
  • [22] A.V. Martynenko, A.F. Tedeev, Cauchy problem for a quasilinear parabolic equation with a source term and an inhomogeneous density, Comput. Math. Math. Phys. 47 (2007), 238–248.
  • [23] A.V. Martynenko, A.F. Tedeev, On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source, Comput. Math. Math. Phys. 48 (2008), 1145–1160.
  • [24] E. Mitidieri, S.I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math. (2001), no. 3, 1–362.
  • [25] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
  • [26] A.M. Piccirillo, L. Toscano, S. Toscano, Blow-up results for a class of first-order nonlinear evolution inequalities, J. Differ. Equations 212 (2005), no. 2, 319–350.
  • [27] R.G. Pinsky, Finite time blow-up for the inhomogeneous equation ut = Δu+a(x)up+λϕ in Rd, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3319–3327.
  • [28] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, vol. 1072, Springer-Verlag, Berlin, 1984.
  • [29] Y. Qi, The critical exponents of parabolic equations and blow-up in Rn, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 123–136.
  • [30] P. Quittner, P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, 2nd ed., Birkhäuser Adv. Texts, Basler Lehrbüch., 2019.
  • [31] M.A. Ragusa, On weak solutions of ultraparabolic equations, Nonlinear Anal. 47 (2001), no. 1, 503–511.
  • [32] M.A. Ragusa, Cauchy–Dirichlet problem associated to divergence form parabolic equations, Commun. Contemp. Math. 6 (2004), no. 3, 377–393.
  • [33] S. Salsa, Partial Differential Equations in Action: From Modelling to Theory, Unitext, vol. 99, 2016.
  • [34] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, Blow-up in Quasi-Linear Parabolic Equations, De Gruyter Expositions in Mathematics, vol. 19, Berlin, 1995.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b2eeed6-9bb7-4549-b6e9-b22b5e7975a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.