PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The problem of water renewal in swimming pool circuits

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Problemy odnowy wody w obiegach basenowych
Języki publikacji
EN
Abstrakty
EN
The problem of water renewal in swimming pools is mainly related to the concentration of some contaminants (with the quality of swimming pool water) and to the need for water to supplement losses in the closed swimming pool circuit (volume of swimming pool water). This problem is presented on the basis of physicochemical analysis of pool water samples (taken every two hours during one day and taken daily during one week) and the amount of supplementary water demand (water metre reading) depending on attendance and in relation to rational water management for a sports-type pool. The results were compared with the guidelines of the Swimming Pool Water Quality Decree and the recommendations of DIN 19643. Pool water quality parameters, such as: absorbance, redox potential, combined chlorine, nitrates, and chlorides, could be considered as indicative for the daily assessment of water, and depending on their value, supplement the circuit with water from the water supply network. The amount of supplementary water used (an average of 40.6 L/bather day) exceeded the DIN 19643 recommendations by 26%. To rationalise water management, a water quality analysis should be carried out with the consumption of supplementary water reduced to 30 L/bather day (that is, on average 11.5 m3/day instead of 15.6 m3/day).
PL
Problem odnowy wody w obiektach basenowych związany jest przede wszystkim z zatężaniem niektórych zanieczyszczeń (z jakością wody basenowej) oraz z zapotrzebowaniem na wodę uzupełniającą straty w zamkniętym obiegu basenowym (objętością wody basenowej). Problem ten przedstawiono na podstawie analizy fizykochemicznej próbek wody basenowej (pobranych co dwie godziny w ciągu jednego dnia oraz pobranych codziennie w ciągu jednego tygodnia) i wielkości zapotrzebowania na wodę uzupełniającą (rejestr wskazań z wodomierza) w zależności od frekwencji oraz w odniesieniu do racjonalnej gospodarki wodnej dla basenu typu sportowego. Wyniki porównano z wytycznymi rozporządzenia w sprawie jakości wody w pływalniach oraz zaleceniami normy DIN 19643. Parametry jakości wody basenowej, takie jak: absorbancja, potencjał redox, chlor związany, azotany i chlorki, można było uznać za wskaźnikowe do codziennej oceny jej jakości i w zależności od ich wartości uzupełniać obieg wodą z sieci wodociągowej. Stosowana ilość wody uzupełniającej (średnio 40,6 L/os.·d) przekraczała zalecenia normy DIN 19643 o 26%. W celu racjonalizacji gospodarowania wodą należałoby przeprowadzać analizę jakości wody przy zmniejszonym do 30 dm3/os.·d zużyciu wody uzupełniającej (czyli średnio 11,5 m3/d zamiast 15,6 m3/d).
Czasopismo
Rocznik
Tom
Strony
29--35
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab.
Twórcy
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Inżynierii Wody i Ścieków, Gliwice
Bibliografia
  • [1] J. Wyczarska-Kokot, M. Dudziak, A. Lempart, Effects of modernization of the water treatment system in a selected swimming pool, Environment Protection Engineering. 45 (2019) 31-43. https://doi.org/10.5277/epe190103.
  • [2] J. Wyczarska-Kokot, Wieloaspektowa analiza parametrów wpływających na jakość wód basenowych, Wydawnictwo Politechniki Śląskiej, Gliwice, 2020.
  • [3] B. Skibinski, S. Uhlig, P. Müller, I. Slavik, W. Uhl, Impact of different combinations of water treatment processes on the concentration of disinfection byproducts and their precursors in swimming pool water, Environ Sci Technol. 53 (2019) 8115-8126. https://doi.org/10.1021/acs.est.9b00491.
  • [4] A. Alansari, J. Amburgey, N. Madding, A quantitative analysis of swimming pool recirculation system efficiency, J Water Health. 16 (2018) 449-459. https://doi.org/10.2166/wh.2018.223.
  • [5] C. Pimentel-Rodrigues, A. Silva-Afonso, Assessment of measures to increase water efficiency in public swimming pools, Sustainability. 14 (2022) 14726. https://doi.org/https://doi.org/10.3390/su142214726.
  • [6] A. Lempart, J. Wyczarska-Kokot, Bilans wody i ścieków dla wybranego obiektu basenowego, INSTAL. 3 (2017) 54-58.
  • [7] J. Wyczarska-Kokot, F. Piechurski, Application of pre-ozonation process in swimming pool water treatment technology, Desalination Water Treat. 186 (2020) 382-393. https://doi.org/10.5004/dwt.2020.25563.
  • [8] A. Włodyka-Bergier, T. Bergier, Influence of the use of an additional oxidant (chlorine dioxide) in water treatment on swimming pool water quality, Energies (Basel). 15 (2022). https://doi.org/10.3390/en15145054.
  • [9] J. Lee, K.T. Ha, K.D. Zoh, Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods, Science of The Total Environment. 407 (2009) 1990-1997. https://doi.org/10.1016/j.scitotenv.2008.11.021.
  • [10] C. Payus, I.Geoffrey, K. Amire, A. Oliver, Coliform bacteria contamination in chlorine-treated swimming pool sports complex, Asian J Sci Res. 11 (2018) 560-567. https://doi.org/10.3923/ajsr.2018.560.567.
  • [11] J. Wyczarska-Kokot, Effect of disinfection methods on microbiological water quality in indoor swimming pools, Architecture Civil Engineering Environment. 4 (2009) 145-152.
  • [12] J. Wyczarska-Kokot, A. Lempart, M. Marciniak, Research and evaluation of water quality in outdoor swimming pools, E3S Web of Conferences. 100 (2019) 8. https://doi.org/10.1051/e3sconf/201910000089.
  • [13] A. Lempart, E. Kudlek, M. Dudziak, The potential of the organic micropollutants emission from swimming accessories into pool water, Environ Int. 136 (2020) 105442. https://doi.org/10.1016/j.envint.2019.105442.
  • [14] A. Lempart, E. Kudlek, M. Dudziak, A. Szyguła, The impact of the circulation system on the concentration level of micropollutants in the swimming pool water treatment system, Inżynieria Ekologiczna. 19 (2018) 23–31. https://doi.org/10.12912/23920629/86051.
  • [15] T.L.L. Teo, H.M. Coleman, S.J. Khan, Chemical contaminants in swimming pools: Occurrence, implications and control, Environ Int. 76 (2015) 16-31. https://doi.org/10.1016/j.envint.2014.11.012.
  • [16] Announcement of the Health Minister on the announcement of the consolidated text of the Regulation of the Health Minister on the requirements for water in swimming pools, Journal of Laws 2022, item 1230 (in Polish).
  • [17] DIN 19643, Water treatment for swimming and bathing pools, Beuth-Verlag, Berlin, 2012 (in German).
  • [18] Guidelines for drinking-water quality, fourth edition, WHO. (2015).
  • [19] Decree of the Health Minister on the quality of water intended for human consumption, Journal of Laws 2017, item 2294 (in Polish).
  • [20] J. Wyczarska-Kokot, The problem of chloramines in swimming pool water - technological research experience, Desalination Water Treat. 134 (2018) 7-14. https://doi.org/10.5004/dwt.2018.22455.
  • [21] E. Kudlek, A. Lempart-Rapacewicz, M. Dudziak, Identification of potential harmful transformation products of selected micropollutants in outdoor and indoor swimming pool water, International Journal of Environmental Research and Public Health 2022, Vol. 19, Page5660. 19 (2022) 5660. https://doi.org/10.3390/IJERPH19095660.
  • [22] M.L. Christensen, M.M. Klausen, P.V. Christensen, Test of precoat filtration technology for treatment of swimming pool water, Water Science and Technology. 77 (2018) 748-758. https://doi.org/10.2166/wst.2017.593.
  • [23] O. Omisakin, I. Young, Compliance of bathers to showering before swimming in a public pool in Toronto, Ontario, Environmental Health Review. 63 (2021) 107-113. https://doi.org/10.5864/d2020-025.
  • [24] Z. Shi, C.W.K. Chow, R. Fabris, T. Zheng, J. Liu, B. Jin, Evaluation of the impact of suspended particles on the UV absorbance at 254 nm (UV254) measurements using a submersible UV-Vis spectrophotometer, Environmental Science and Pollution Research. 28 (2021)12576-12586. https://doi.org/10.1007/S11356-020-11178-0.
  • [25] B. Potter, J. Wimsatt, Determination of total organic carbon and specific UV absorbance at 254 nm in source water and drinking water, EPA Document, Method 415.
  • [26] A. Nowacka, M. Włodarczyk-Makuła, Zmiany absorbancji w nadfiolecie (UV254) w wodzie w procesach uzdatniania, LAB Laboratoria, Aparatura, Badania. 6 (2016) 28-31.
  • [27] E. Łaskawiec, M. Dudziak, J. Wyczarska-Kokot, Assessment of the possibility of using flocculation to improve properties of ultrafiltration membranes used in the purification of swimming pool water system washings, in: E3S Web of Conferences, 2017. https://doi.org/10.1051/e3sconf/20171700053.
  • [28] E. Łaskawiec, M. Madej, M. Dudziak, J. Wyczarska-Kokot, The use of membrane techniques in swimming pool water treatment, Journal of Ecological Engineering. 18 (2017). https://doi.org/10.12911/22998993/74282.
  • [29] Wyczarska-Kokot J., Analysis of the effects of using classical and modified pool water treatment technologies, Architecture Civil Engineering Environment. 1 (2022) 103-113. https://doi.org/10.21307/ACEE-2022-009.
  • [30] W.L. Bradford, What bathers put into a pool: A critical review of body fluids and a body fluid analog, International Journal of Aquatic Research and Education. 8 (2014) 168-181. https://doi.org/10.1123/ijare.2013-0028.
  • [31] J. Wyczarska-Kokot, M. Dudziak, Reuse - Reduce - Recycle: water and wastewater management in swimming pool facilities, Desalination Water Treat. 275 (2022) 69-80. https://doi.org/10.5004/dwt.2022.28756.
  • [32] Guidelines for Safe Recreational Water Environments. Volume 2: Swimming Pools and Similar, WHO, Geneva, 2006.
  • [33] F. Gallè, L. Dallolio, M. Marotta, A. Raggi, V. Di Onofrio, G. Liguori, F. Toni, E. Leoni, Health-related behaviors in swimming pool users: Influence of knowledge of regulations and awareness of health risks, Int J Environ Res Public Health. 13 (2016) 513. https://doi.org/10.3390/ijerph13050513.
  • [34] M. Couto, A. Bernard, Health effects of exposure to chlorination by-products in swimming pools: Position Paper, Allergy. (2021) 00:1-19. https://doi.org/DOI: 10.1111/all.15014
Uwagi
1. The topic was presented during the 2nd Scientific and Technical Conference “Science-Technology-Environment” on September 27-29, 2023 in Wisla. The conference is financed by the Minister of Education and Science as part of the “Excellent Science” program - the “Support for scientific conferences” module (project no. DNK/SP/546599/2022).
2. Temat zaprezentowany podczas II Konferencji Naukowo-Technicznej „Nauka-Technologia-Środowisko” w dniach 27-29 września 2023 r. w Wiśle. Konferencja finansowana przez Ministra Edukacji i Nauki w ramach programu „Doskonała nauka” - moduł „Wsparcie konferencji naukowych” (projekt nr DNK/ SP/546599/2022).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b2b852b-d10d-49de-8898-aef365101060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.