PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterisation of carbon nanotubes decorated with platinum nanoparticles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In presented work results of synthesis of carbon nanotubes decorated with platinum nanoparticles by organic colloidal process as an example of direct formation of nanoparticles onto CNTs are reported. Design/methodology/approach: Powder XRD and transmission electron microscopy were used for characterisation of the morphology of composite as well as the distribution of nanocrystals on the CNTs surfaces. Findings: TEM results confirm that CNT were homogeneous and clean, without any admixtures and carbon deposits. High efficiency of covering carbon nanotubes (without aggregation) by platinum nanoparticles by organic colloidal process was confirmed. Observed particles appear to have a narrow size distribution. HAADF images confirm homogeneous covering of carbon nanotubes. Large clusters as well as empty fragments were not observed. Research limitations/implications: Some properties of materials in nanoscale strongly depend on size and are significantly changed if that size is smaller than 100 nm. Majority of these effects were no described and explained so far, what is mainly follows that image the object at nanoscale is difficult. Practical implications: Carbon nanotubes decorated with platinum and other precious metal nanoparticles can be characterised with atomic resolution by scanning transmision electron microscopy. Originality/value: Results of characterisation of raw carbon nanotubes as well as carbon nanotubes decorated with platinum nanoparticles were demonstrated in this work.
Rocznik
Strony
67--75
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, M. Pawlyta, A. Krztoń, B. Liszka, K. Labisz, Synthesis and characterization of carbon nanotubes decorated with platinum nanoparticles, Journal of Achievements in Materials and Manufacturing Engineering. 39/2 (2010) 184-189.
  • [2] B. Liszka, A. Krztoń, M. Pawlyta, Carbon nanomaterials from carbon monoxide using nickel and cobalt catalysts, Acta Physica Polonica A 118 (2010) 471-474.
  • [3] L.A. Dobrzański, M. Pawlyta, A. Krztoń, B. Liszka, C.W. Tai, W. Kwasny, Synthesis and characterization of carbon nanotubes decorated with gold nanoparticles, Acta Physica Polonica A 118 (2010) 483-486.
  • [4] L.A. Dobrzański, M. Pawlyta, A. Krztoń, B. Liszka, Carbon nanotubes decorated with platynium nanoparticles as active component of chemical sensors, Proceedings of the 5th Scientific and Technical Conference Carbon Materials and Polymer Composites, Ustroń-Jaszowiec, 2010, 16-17.
  • [5] M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon nanotubes: Synthesis, structure, properties and applications, Springer, 2009.
  • [6] R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes - the route toward applications, Science 297/2 (2002) 787-792.
  • [7] M. Endo, M. Strano, P. Ajayan, Potential applications of carbon nanotubes, Carbon Nanotubes 111 (2008) 13-61. (http://dx.doi.org/10.1007/978-3-540-72865-8_2).
  • [8] Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals, Simple chemistry meets complex physics, Angewandte Chemie International Edition 48 (2009) 60-103.
  • [9] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287/5453 (2000) 622-625.
  • [10] W.D. Zhang, W. H. Zhang, Carbon nanotubes as active components for gas sensors, Journal of Sensors 2009/160698 (2009) 1-16.
  • [11] N. Sinha, J. Ma, J.T.W. Yeow, Carbon nanotube-based sensors, Journal of Nanoscience and Nanotechnology 6 (2006) 573-590.
  • [12] A. Star, V. Joshi, S. Skarupo, D. Thomas, J.C.P. Gabriel, Gas sensor array based on metal-decorated carbon nanotubes, The Journal of Physical Chemistry B 110/42 (2006) 21014-21020.
  • [13] S.H.I. Qiao Cui, T.Z. Peng, A novel cholesterol oxidase biosensor based on Pt-nanoparticle/carbon nanotube modified electrode, Chinese Chemical Letters 16/8 (2005) 1081-1084.
  • [14] H.F Cui, J.S. Ye, X. Liu, W.D. Zhang, F.S. Sheu, Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation, Nanotechnology 17 (2006) 2334-2339.
  • [15] R. Strobel, J. Garche, P.T. Moseley, L. Jorissen, G. Wolf, Hydrogen storage by carbon materials, Journal of Power Sources 159/2 (2006) 781-801.
  • [16] M. Hirscher, M. Becher, M. Haluska, F. von Zeppelin, X. Chen, U. Dettlaff-Weglikowska, S. Roth, Are carbon nanostructures an efficient hydrogen storage medium?, Journal of Alloys and Compounds 356 (2003) 433-437.
  • [17] T. Yildirim, S. Ciraci, Titanium-decorated carbon Nanotubes as a potential high-capacity hydrogen storage medium, Physical Review Letters 94/17 (2005) 1-5.
  • [18] P. Brown, K. Takechi, P.V. Kamat, Single-walled carbon nanotube scaffolds for dye-sensitized solar cells, The Journal of Physical Chemistry C 112/12 (2008) 4776-4782.
  • [19] M. Bottini et al., Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes, Biomacromolecules 7/8 (2006) 2259-2263.
  • [20] R. Brydson, Aberation-corrected analytical transmission electron microscopy, John Wiley & Sons, Ltd, 2011.
  • [21] R. Brydson, Electron energy loss spectroscopy, Taylor and Francis, 2001.
  • [22] http://www.crystallography.net.
  • [23] www.unipress.waw.pl/fityk/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b1ce777-0416-4759-b135-834d4a0fd01d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.