PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Si morphology in AlSi21CuNiMg cast alloy using col our and deep etching

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of possible modification and refining effect of Al-Cu-P-based pre-alloy combined with Fe on the microstructure and the silicon morphology change in hypereutectic Al-Si cast alloy was studied. The samples in the as-cast state were observed by optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The 3D morphology of both primary and eutectic silicon was observed by using colour and deep etching in detail. The results showed that the AlCu19P1.4 pre-alloy (1.07 wt.%) combined with the addition of Fe (0.02 wt.%) has a significant effect on the change of the amount, size and morphology of primary Si. This is significantly refined and changes the shape from a coarse irregular star-shaped, polyhedral, or plate-like shape to a fine polyhedral shape. The average size of the primary Si is reduced by about of 78 % from 135 μm to 28 μm and the number of primary Si particles increased from 7.4 to 237. No change in the morphology of the eutectic Si was observed; a refinement of the structure from a coarse needle/plate-like to a fine plate-like structure was seen. The depth etching method using HCl was very effective in the study of the 3D silicon morphology observed, which could be observed in detail without the presence of artefacts.
Rocznik
Strony
art. no. e144618
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
Bibliografia
  • [1] J. Jorstad and D. Apelian, “Hypereutectic Al–Si Alloys: Practical Casting Considerations,” Int. J. Metalcast., vol. 3, pp. 13–36, 2009, doi: 10.1007/BF03355450.
  • [2] S. Meng, S. Wu, X. Wang, and L. Wan, “Effects of Co addition on Fe-bearing intermetallic compounds and mechanical properties of AlSi20Cu2Ni1Fe0.7-1 alloys,” J. Alloy. Compd., vol. 551, pp. 468–474, 2013, doi: 10.1016/j.jallcom.2012.10.181.
  • [3] C. Gong, H. Tu, C. Wu, J. Wang, and X. Su, “Study on Microstructure and Mechanical Properties of Hypereutectic Al-18Si Alloy Modified with Al-3B,” Materials, vol. 11, pp. 456, 2018, doi: 10.3390/ma11030456.
  • [4] J. Pezda, “Assessment of AlSi21CuNi Alloy’s Quality with Use of ATND Method,” Arch. Foundry Eng., vol. 13, no. 4, pp. 87–92, 2013, doi: 10.2478/afe-2013-0088.
  • [5] Z. Zhang, H-T. Li, I.C. Stone, and Z. Fan, “Refinement of primary Si in hypereutectic Al–Si alloys by intensive melt shearing,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 27, p. 012042, 2011, doi: 10.1088/1757-899X/27/1/012042.
  • [6] J. Wang, Z. Guo, J.L. Song, W.X. Hu, J.C. Li, and S.M. Xiong, “Morphology transition of the primary silicon particles in a hypereutectic A390 alloy in high pressure die casting,” Sci. Rep., vol. 7, p. 14994, 2017, doi: 10.1038/s41598-017-15223-w.
  • [7] Foundry Technologies & Engineering GmbH. [Online]. Available: https://www.giessereilexikon.com
  • [8] P. Jiandon and S. Talangkun, “Microstructural Modification Hardness and Surface Roughness of Hypereutectic Al–Si Alloys by A Combination of Bismuth and Phosphorus,” Crystals, vol. 12, p. 1026, 2022, doi: 10.3390/cryst12081026.
  • [9] P. Xing, B. Gao, Y. Zhuang, K. Liu, and G. Tu, “On the modification of hypereutectic Al–Si alloys using rare earth Er,” Acta Metall. Sin.-Engl. Lett., vol. 23, no. 5, pp. 327–333, 2010, doi: 10.11890/1006-7191-105-327.
  • [10] L. Zhang, S. Chen, Q. Li, G. Chang, “Formation mechanism and conditions of fine primary silicon being uniformly distributed on single aAl matrix in Al–Si alloys,” Mater. Des., vol. 193, pp. 108853, 2020, doi: 10.1016/j.matdes.2020.108853.
  • [11] M. Michalski and F. Romankiewicz, “AlSi21CuNi silumin modification with phosphor and strontium micro additions”, in E3S Web Conf., vol. 19, p. 03026, 2017, doi: 10.1051/e3sconf/20171903026.
  • [12] E. Tillová, M. Farkašová, and M. Chalupová, “The role of antimony in modifying of Al–Si–Cu cast alloy,” Manuf. Technol., vol. 13, no. 1, pp. 109–114, 2013, doi: 10.21062/ujep/x.2013/a/1213-2489/MT/13/1/109.
  • [13] M. Farkašová, E. Tillová, and M. Chalupová, “Modification of Al–Si-Cu cast alloy,” FME Trans., vol. 41, no. 3, pp. 210–215, 2013.
  • [14] K. Borko, E. Tillová, and M. Chalupová, “The impact of Sr content on Fe – intermetallic phase’s morphology changes in alloy AlSi10MgMn,” Manuf. Technol., vol. 16, no. 1, pp. 20–26, 2016, doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/1/20.
  • [15] Q. Li, B. Li, J. Li, Y. Zhu, and T. Xia, “Effect of yttrium addition on the microstructures and mechanical properties of hypereutectic Al-20Si alloy,” Mater. Sci. Eng. A, vol. 722, 2018, pp. 47–57, doi: 10.1016/j.msea.2018.03.015.
  • [16] M. Zuo, X.F. Liu, Q.Q. Sun, and K. Jiang, “Effect of rapid solidification on the microstructure and refining performance of an Al–Si–P master alloy,” J. Mater. Process. Technol., vol. 209, no. 15–16, pp. 5504–5508, 2009, doi: 10.1016/j.jmatprotec.2009.05.005.
  • [17] W.M. Mao, P.Y. Yan, and Z.K. Zheng, “Refinement of primary silicon grains in semi-solid al-25% Si hypereutectic aluminium alloy slurry,” Solid State Phenomena, vol. 285, pp. 153–160, 2019, doi: 10.4028/www.scientific.net/SSP.285.153.
  • [18] L. Dehong, J. Yehua, G. Guisheng, Z. Rongfeng, L. Zhenhua, and Z. Rong, “Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring,” J. Mater. Process. Technol., vol. 189, no. 1–3, pp. 13–18, 2007, doi: 10.1016/j.jmatprotec.2006.12.008.
  • [19] Q.C. Zou, J.C. Jie, J.L. Sun, T.M. Wang, Z.Q. Cao, and T.J. Li, “Effect of Si content on separation and purification of the primary Si phase from hypereutectic Al–Si alloy using rotating magnetic field,” Sep. Purif. Technol., vol. 142, pp. 101–107, 2015, doi: 10.1016/j.seppur.2015.01.005.
  • [20] X. Bian and W. Wang, “Thermal-rate treatment and structure transformation of Al-13wt.% Si alloy melt,” Mater. Lett., vol. 44, no. 1, pp. 54–58, 2000, doi: 10.1016/S0167-577X(00)00011-2.
  • [21] A.V. Pozdniakov, M.V. Glavatskikh, S.V. Makhov, and V.I. Napalkov, “The synthesis of novel powder master alloys for the modification of primary and eutectic silicon crystals,” Mater. Lett., vol. 128, pp. 325–328, 2014, doi: 10.1016/j.matlet.2014.04.068.
  • [22] Z. Min and L. Xiangfa, “Series of Al–P Master Alloy and excellent refining performance on hypereutectic A390 Alloys,” Adv. Mater. Res., vol. 306–307, pp. 613–616, 2011, doi: 10.4028/www.scientific.net/AMR.306-307.613.
  • [23] J. Piątkowski, “The phosphorus interaction on the process forming of primary structure of hypereutectic silumins,” Arch. Foundry Eng., vol. 9, no. 3, pp. 125–128, 2009.
  • [24] M. Zuo, D. Zhao, X. Teng, H. Geng, and Z. Zhang, “Effect of P and Sr complex modification on Si phase in hypereutectic Al-30Si alloys,” Mater. Des., 47, pp. 857–864, 2013, doi: 10.1016/j.matdes.2012.12.054.
  • [25] B. Heshmatpour, “Modification of Silicon in Eutectic and Hyper-Eutectic Al–Si Alloys”, in Essential Readings in Light Metals. J.F. Grandfield, D.G. Eskin, Eds., Springer, Cham, 2016, doi: 10.1007/978-3-319-48228-6_53.
  • [26] R. Romankiewicz and F. Romankiewicz, “Influence of modification on the refinement of primary silicon crystals in hypereutectic silumin AlSi21CuNi,” Prod. Eng. Arch., vol. 19, pp. 30–36, 2018, doi: 10.30657/pea.2018.19.07.
  • [27] T. Lipinski, “Modification of AlSi21CuNi alloy by fast cooled alloy with Al, B and Ti”, in Proceedings of the international scientific conference Engineering for Rural Development, Latvia, 2016, pp. 940–945.
  • [28] B. Bryksí Stunová and D. Henzl, “Aluminium alloys for combustion engines and compressors pistons,” Slévárenství, vol. LXIV, no. 3–4, pp. 82–85, 2016.
  • [29] L. Kuchariková, E. Tillová, M. Bonek„ and M. Chalupová, “Using deep etching in the study of eutectic silicon 3D-morphology in AlSi7MgTi cast alloy,” Arch. Metall. Mater., vol. 63, no. 4, pp. 2017–2022, 2018, doi: 10.24425/amm.2018.125138.
  • [30] L. Kuchariková, E. Tillová, J. Belan, A. Vaško, and I. Švecová, “Quantitative assessment of aluminium cast alloys´structural parameters to optimize its properties,” Metalurgija, vol. 56, no. 1–2, pp. 145–148, 2017. [Online]. Available: https://hrcak.srce.hr/168914 [Accessed 22.08.2022].
  • [31] V. Vijeesh and P.K. Narayan, “Review of Microstructure Evolution in Hypereutectic Al–Si Alloys and its Effect on Wear Properties,” Trans. Indian Inst. Met., vol. 67, pp. 1–18, 2014, doi: 10.1007/s12666-013-0327-x.
  • [32] C.L. Xu, H.Y. Wang, C. Liu, and Q.C. Jiang, “Growth of octahedral primary silicon in cast hypereutectic Al–Si alloys,” J. Cryst. Growth, vol. 291, pp. 540–547, 2006, doi: 10.1016/j.jcrysgro.2006.03.044.
  • [33] M.M. Makhlouf and H.V. Guthy, “The aluminum-silicon eutectic reaction: mechanisms and crystallography,” J. Light Met., vol. 1, no. 4, pp. 199–218, 2001, doi: 10.1016/S1471-5317(02)00003-2.
  • [34] D.R. Hamilton and R.G. Seidensticker, “Growth Mechanisms of Germanium Dendrites: Kinetics and the Nonisothermal Interface,” J. Appl. Phys., vol. 34, no. 5, pp. 1450–1460, 1963, doi: 10.1063/1.1729599.
  • [35] F. Mao et al., “Different Influences of Rare Earth Eu Addition on Primary Si Refinement in Hypereutectic Al–Si Alloys with Varied Purity,” Materials, vol. 12, p. 3505, 2019, doi: 10.3390/ma12213505.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b1c3bc8-e25e-49c6-93c2-df2376d170fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.