PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

1999 - 2024, a quarter century of the Parr’s electrophilicity ω Index

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1999, Robert G. Parr introduced the electrophilicity ω index as a measure of the electronic stabilization of a molecule when it acquires an additional amount of electron density. Numerous theoretical studies over the last 25 years have demonstrated the usefulness of this index in the study of polar reactions. The present MEDT study reinforces the relevance of Parr's electrophilicity ω index as a quantitative measure of the electrophilic character of species involved in polar reactions.
Czasopismo
Rocznik
Strony
157--186
Opis fizyczny
Bibliogr. 63 poz., il. kolor., 1 portr., wykr.
Twórcy
  • Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
Bibliografia
  • [1] Ingold, C.K.; Significance of Tautomerism and of the Reactions of Aromatic Compounds in the Electronic Theory of Organic Reactions. J. Chem. Soc. 1933, 1120-1127. DOI: 10.1039/JR9330001120
  • [2] Lapworth, A.; Replaceability of Halogen Atoms by Hydrogen Atoms: A General Rule. Nature 1925, 115-625.
  • [3] Mayr, H.; Patz, M.; scales of Nucleophilicity and Electrophilicity: A System for Ordering Polar Organic and Organometallic Reactions. Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957. DOI: 10.1002/anie.199409381
  • [4] Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H.; Reference Scales for the Characterization of Cationic Electrophiles and Neutral Nucleophiles. J. Am. Chem. Soc. 2001, 123, 9500-9512. DOI: 10.1021/ja010890y
  • [5] Lucius, R.; Loos, R.; Mayr, H.; Combinations: Key to a General Concept of Polar Organic Reactivity. Angew. Chem., Int. Ed. 2002, 41, 91-95. DOI: 10.1002/1521-3773(20020104)41:1<91::AID-ANIE91>3.0.CO;2-P
  • [6] Phan, T. B.; Breugst, M.; Mayr, H.; Towards a General Scale of Nucleophilicity?. Angew. Chem., Int. Ed. 2006, 45, 3869-3874.
  • [7] Domingo, L.R.; Arnó, M.; Andrés, J ; Influence of reactant polarity on the course of the inverse-electron-demand Diels-Alder reaction. A DFT study of regio- and stereoselectivity, presence of Lewis acid catalyst, and inclusion of solvent effects in the reaction between nitroethene and substituted ethenes, J. Org. Chem. 1999, 64, 5867-5875. DOI: 10.1021/jo990331y
  • [8] Domingo, L.R.; A new C-C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 2014, 4, 32415-32428. DOI: https://doi.org/10.1039/C4RA04280H
  • [9] Sauer, J.; Wiest, H.; Mielert, A.; Eine Studie der Diels-Alder-Reaktion, I. Die Reaktivität von Dienophilen gegenüber Cyclopentadien und 9.10-Dimethyl-anthracen. Chem. Ber. 1964, 97, 3183-3207. DOI: 10.1002/cber.19640971129
  • [10] Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R.; Origin of the synchronicity on the transition structures of polar Diels-Alder reactions. Are these reactions [4+2] processes?. J. Org. Chem. 2003, 68, 3884-3890. DOI: 10.1021/jo020714n
  • [11] Domingo, L.R.; Sáez, J.A.; Understanding the mechanism of polar Diels-Alder reactions, Org. Biomol. Chem., 2009, 7, 3576-3583. DOI: 10.1039/B909611F
  • [12] Parr, R. G.; Yang, W.; Density-functional theory of the electronic structure of molecules. Annu. Rev. Phys. Chem. 1995, 46, 701-728. DOI: 10.1146/annurev.pc.46.100195.003413
  • [13] Parr, R.G.; Yang,W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989.
  • [14] Parr, R. G.; Pearson, R.G.; Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516.
  • [15] Parr, R. G.; von Szentpaly, L.; Liu, S.; Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922 -1924. DOI: 10.1021/ja983494x
  • [16] Koopmans, T.; Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1933, 1, 104-113. DOI: 10.1016/S0031-8914(34)90011-2
  • [17] Kohn, W.; Sham, L. J.; Self-consistent equations including exchange and correlation effects. Phys. Rev. B 1965, 140, A1133-A1138. DOI: 10.1103/PhysRev.140.A1133
  • [18] Hohenberg, P.; Kohn, W.; Inhomogeneous electron gas Kohn, W. Physical Review 1964, 136, B864 -B871. DOI: 10.1103/PhysRev.136.B864
  • [19] Pérez, P.; Domingo, L.R.; Aizman, A.; Contreras, R.; The Electrophilicity Index in Organic Chemistry, In Theoretical Aspects of Chemical Reactivity. Elsevier. New York. 19, 2007, pp 139-201. DOI: 10.1016/S1380-7323(07)80010-0
  • [20] Domingo, L. R.; Ríos-Gutiérrez, M.; In Application of Reactivity Indices in the Study of Polar Diels-Alder Reactions. Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, Ed. Shubin Liu. WILEY-VCH GmbH. 2022, Vol. 2, pp, 481-502. DOI: 10.1002/9783527829941.ch24
  • [21] Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R.; Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 2002, 58, 4417-4423. DOI: 10.1016/S0040-4020(02)00410-6
  • [22] Domingo, L.R.: Ríos-Gutiérrez, M.; Pérez, P.; Why is Phenyl Azide so Unreactive in [3+2] Cycloaddition Reactions? Demystifying Sustmann’s Paradigmatic Parabola. Org. Chem. Front. 2023, 10, 5579-5591. DOI: 10.1039/D3QO00811H
  • [23] Domingo, L.R.; Pérez, P.; Sáez, J.A.; Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv. 2013, 3, 1486-1494. DOI: 10.1039/C2RA22886F
  • [24] Domingo, L.R.; Chamorro, E.; Pérez, P.; Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615-4624. DOI: 10.1021/jo800572a
  • [25] Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.; Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. DOI: 10.3390/molecules21060748
  • [26] Blanco, M. A.; Martín Pendás, A.; Francisco, E.; Interacting Quantum Atoms: A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules, J. Chem. Theory Comput. 2005, 1, 1096-1109. DOI: 10.1021/ct0501093
  • [27] Domingo, L.R.: Ríos-Gutiérrez, M.; Pérez, P.; Understanding the Electronic Effects of Lewis Acid Catalysts in Accelerating Polar Diels-Alder Reactions. J. Org. Chem. 2024. DOI: 10.1021/acs.joc.4c01297.
  • [28] Domingo, L.R.; Pérez, P.; Ríos-Gutiérrez, M.; Aurell, M.J.; A Molecular Electron Density Theory Study of Hydrogen Bond Catalysed Polar Diels-Alder Reactions of -unsaturated Carbonyl Compounds, Tetrahedron Chem. 2024, 10,100064. DOI: 10.1016/j.tchem.2024.100064
  • [29] Domingo, L.R.: Ríos-Gutiérrez, M.; Revealing the Critical Role of Global Electron Density Transfer in the Reaction Rate of Polar Organic Reactions within Molecular Electron Density Theory. Molecules 2024, 29, 1870. DOI: 10.3390/molecules29081870
  • [30] Bickelhaupt, F.M.; Fernández, I.; What defines electrophilicity in carbonyl compounds. Chem. Sci. 2024, 15, 3980-3987. DOI: 10.1039/D3SC05595G
  • [31] Bickelhaupt, F.M.; Understanding reactivity with Kohn-Sham molecular orbital theory: E2-SN2 mechanistic spectrum and other concepts. J. Comput. Chem. 1999, 20, 114-128. DOI:10.1002/(SICI)1096-987X(19990115)20:1%3C114::AID-JCC12%3E3.0.CO;2-L
  • [32] Bickelhaupt, F.M.; Baerends, E.J.; Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry., In Reviews in Computational Chemistry (eds K.B. Lipkowitz and D.B. Boyd). John Wiley & Sons, Inc. 2007, pp 1-86.
  • [33] Mulliken, R.S.; Spectroscopy, molecular orbitals and chemical bonding. Science 1967, 157, 13-24.
  • [34] Schrödinger, E.; An ondulatory theory of the mechanics of atoms and molecules. Phys. Rev. B 1926, 28, 1049-1070. DOI: 10.1103/PhysRev.28.1049
  • [35] Hehre, W.J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A.; Ab initio molecular orbital theory; Wiley, New York, 1986.
  • [36] Jaramillo, P.; Domingo, L.R.; Chamorro, E.; Pérez. P.; A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J. Mol. Struct. (Theochem) 2008, 865, 68-72. DOI: 10.1016/j.theochem.2008.06.022
  • [37] Chattaraj, P.K.; Roy, D.R.; Update 1 of: Electrophilicity Index, Chem. Rev. 2007, 107, PR46-PR74. DOI: 10.1021/cr078014b
  • [38] Domingo, L.R.; Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. DOI: 10.3390/molecules21101319
  • [39] Becke, A.D.; Edgecombe, K.E.; A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397-5403. DOI: 10.1063/1.458517
  • [40] Bader, R.F.W.; Tang, Y.H.; Tal, Y.; Biegler-König, F.W.; Properties of atoms and bonds in hydrocarbon molecules. J. Am. Chem. Soc., 1982, 104, 946-952.
  • [41] Bader, R.F.W.; In Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, New York, 1994.
  • [42] Ríos-Gutiérrez, M.; Saz Sousa, A; Domingo, L.R. Electrophilicity and Nucleophilicity Scales at Different Computational Levels. J. Phys. Org. Chem. 2023, e4503. DOI: 10.1002/poc.4503
  • [43] Silvi, B.; Savin, A.; Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 1994, 371, 683-686. DOI: 10.1038/371683a0
  • [44] Hammond, G. S.; A Correlation of Reaction Rates. J. Am. Chem. Soc. 1955, 77, 334-338.
  • [45] Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E.; From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y system. J. Chem. Phys. 2002, 117, 5529-5542. DOI: 10.1063/1.1501133
  • [46] J.-D. Chai and M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620. DOI: 10.1039/B810189B
  • [47] Schlegel, H. B.; Optimization of equilibrium geometries and transition structures. J. Comput. Chem., 1982, 3, 214-218. DOI: 10.1002/jcc.540030212
  • [48] Schlegel, H.B.; in Modern Electronic Structure Theory, ed. D. R Yarkony, World Scientific Publishing: Singapore, 1994.
  • [49] Fukui, K.; Formulation of the reaction coordinate. J. Phys. Chem., 1970, 74, 4161-4163.
  • [50] González, C.; Schlegel, H.B.; Reaction path following in mass-weighted internal coordinates. J. Phys. Chem., 1990, 94, 5523-5527.
  • [51] González, C.; Schlegel, H.B.; Improved algorithms for reaction path following: Higher‐order implicit algorithms. J. Chem. Phys., 1991, 95, 5853-5860. DOI: 10.1063/1.461606
  • [52] Tomasi, J.; Persico, M.; Molecular interactions in solution: and overview of methods based on continuous distributions of the solvent. Chem. Rev., 1994, 94, 2027-2094.
  • [53] Simkin, B.Y.; Sheikhet, I.I.; Quantum chemical and statistical theory of solutions-computational approach, Ellis Horwood: London, 1995.
  • [54] Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J.; Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chem. Phys. Lett., 1996, 255, 327-335. DOI: 10.1016/0009-2614(96)00349-1
  • [55] Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J.; A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys., 1997, 107, 3032-3041. DOI: 10.1063/1.474659
  • [56] Barone, V.; Cossi, M.; Tomasi, J.; Geometry optimization of molecular structures in solution by the polarizable continuum model, J. Comput. Chem., 1998, 19, 404-417. DOI: 10.1002/(SICI)1096-987X(199803)19:4%3C404::AID-JCC3%3E3.0.CO;2-W
  • [57] Reed, A.E.; Weinstock, R.B.; Weinhold, F.; Natural population analysis. J. Chem. Phys., 1985, 83, 735-746. DOI: 10.1063/1.449486
  • [58] Reed, A.E.; Curtiss, L.A.; Weinhold, F.; Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev., 1988, 88, 899-926.
  • [59] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016.
  • [60] Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B.; Computational tools for the electron localization function topological analysis. Comput. Chem., 1999, 23, 597-604. DOI: 10.1016/S0097-8485(99)00039-X
  • [61] Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580-592. DOI: 10.1002/jcc.22885
  • [62] Dennington, R.; Keith, T.A.; Millam, J.M.; GaussView, Version 6.1, Semichem Inc., Shawnee Mission, KS, 2016.
  • [63] AIMAll (Version 19.10.12), Keith, T. A. TK Gristmill Software, Overland Park KS, USA, 2019 (aim.tkgristmill.com).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b19382c-3522-4c34-a6d4-b20aeca29911
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.