PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Silver Matrix Composite Reinforced by Aluminium-Silver Intermetallic Phases

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silver and aluminum powders (82 mass % Ag and 18 mass % Al) were mixed and hot extruded at 673 K with extrusion ratio λ = 25. Performed X-ray diffraction analysis of as extruded rod revealed the development of Ag3Al and Ag2Al-type intermetallic phases. Structural observations and both chemical and diffraction analysis of structural components confirmed the growth of mentioned phases in the vicinity of elementary Al and Ag granules. No pores or voids were observed in the material. Mechanical properties of the composite, UTS = 490MPa, YS = 440 MPa, HV2 = 136, were relatively high if compared to commercial Ag and Cu products. Hot compression tests pointed to the good hot workability of the composite at deformation temperature range 473 K - 773 K. The differential scanning calorimetry tests were performed in order to estimate structural processes during heating of Ag/Al composite that lead to thermodynamically stable liquid state. It was found that characteristic temperature of three endothermic peaks correspond to (1) peritectoid transformation μ-Ag3Al → ζ-Ag2Al + (Ag), (2) the eutectic melting ζ-Ag2Al + (Al) → L, (3) melting of the ζ-Ag2Al phase. The Vickers hardness of the samples annealed at 673 K, for the time range up to 6900 minutes, was also determined. It was concluded that mutual diffusion of elements between Ag and Al granules and the growth of μ-Ag3Al and ζ-Ag2Al grains during annealing at 673 K result in a slight hardening of the composite.
Twórcy
autor
  • AGH University of Science and Technology in Cracow, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology in Cracow, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • State Higher Vocational School in Tarnow, Polytechnic Institute, Department of Materials Engineering, Poland
autor
  • AGH University of Science and Technology in Cracow, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology in Cracow, Faculty of Non-Ferrous Metals, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] S.O. Kasap, Principles of electrical engineering materials and devices, 2000 McGraw-Hill, Boston.
  • [2] A. Korbel, W. Bochniak, A. Pawełek, Archiwum Hutnictwa 26, 253-275 (1981).
  • [3] S. Karabay, Mater. Design 29 (7), 1364-1375 (2008).
  • [4] T. Knych, M. Piwowarska-Uliasz, P. Uliasz, Arch. Metall. Mater. 59 (1), 339-343 (2014).
  • [5] Y. Sakai, K. Inoue, H. Maeda, Acta Metall. Mater. 43, (4), 1517-1522 (1995).
  • [6] M.S. Lim, J.S. Song, S.I. Hong, J. Mater. Sci. 35 (18), 4557-4561 (2000).
  • [7] S. Nestorovic, I. Markovic, D. Markovic, Mater. Design 31 (3), 1644-1649 (2010).
  • [8] Y.Z. Tian, Z.F. Zhang, Mat. Sci. Eng. A-Struct. 508 (1-2), 209-213 (2009).
  • [9] J.B. Liu, L. Meng, Y.W. Zeng, Mat. Sci. Eng A-Struct. 435-436, 237-244 (2006).
  • [10] A. Kawecki, T. Knych, E. Sieja-Smaga, A. Mamala, P. Kwaśniewski, G. Kiesiewicz, B. Smyrak, A. Pacewicz, Arch. Metall. Mater. 57 (4), 339-343 (2012).
  • [11] Y. Sakai, K. Inoue, T. Asano, IEEE T. Magn. 28 (l), 888-891(1992).
  • [12] L. Błaż, J. Kaneko, M. Sugamata, Mater. Chem. Phys. 81 (2-3), 387-389 (2003).
  • [13] T. Skrzekut, A. Kula, L. Błaż, G. Włoch, M. Sugamata, Int. J. Mater. Res. 105 (3), 282-287 (2014)
  • [14] A. Kula, L. Błaż, J .Kaneko, M. Sugamata, Journal of Microscopy 237 (3), 421-426 (2010).
  • [15] L. Blaz, Z. Sierpinski, M. Tumidajewicz, J. Kaneko and M. Sugamata, Mater. Sci. Tech. Ser. 20 (12), 1639-1644 (2004).
  • [16] G.R. Khayati, K. Janghorban, Adv. Powder Technol. 23 (6), 808-813 (2012)
  • [17] U. Grundmann, M. Gerner, M. Heilmaier, U. Martin, L. Schultz, H. Oettel, Mater. Sci. Eng. A-Struct. 234-236, 505-508 (1997)
  • [18] B. Juszczyk, J. Kulasa, A. Gubernat, W. Malec, L. Ciura, M. Malara, L. Wierzbicki, J. Golebiewska-Kurzawska, Arch. Metall. Mater. 57 (4),1063-1073 (2012).
  • [19] C.P. Wu, D.Q. Yi, J. Li, L.R. Xiao, B. Wang, F. Zheng, J. Alloy. Compd. 457 (1-2), 565-570 (2008).
  • [20] M. Braunovic, N. K. Myshkin, V. V. Konchits, Electrical Contacts: Fundamentals, Applications and Technology, 2006 CRC Press.
  • [21] M. Richert, J. Richert, A. Hotloś, P. Pałka, W. Pachla, M. Perek, Mater. Sci. Forum 667-669, 145-150 (2011)
  • [22] M.W. Richert, J. Richert, A. Hotlos, M. Mroczkowski, T. Tokarski, Arch. Metall. Mater. 58 (1), 73-75 (2013).
  • [23] W. Głuchowski, J.P. Stobrawa, Z.M. Rdzawski, K. Marszowski, Journal of Achievements in Materials and Manufacturing Engineering 46 (1), 40-49 (2011).
  • [24] Z. Rdzawski, W. Głuchowski, J. Stobrawa, W. Kempiński, B. Andrzejewski, Arch. Civ. Mech. Eng. 15 (3), 689-697 (2015).
  • [25] H. McQueen, S. Spigarelli, M.E. Kassner, E. Evangelista, Hot Deformation and Processing of Aluminium Alloys, 2011 CRC Press
  • [26] Data from the software of X-ray Rigaku MiniFlex II diffractometer cited according to J.P. Neumann, Y.A. Chang, T. Metall. Soc. AIME 242, 700 (1968).
  • [27] V.I. Dybkov, J. Phys. Chem. Solids 47 (8), 735-740 (1986).
  • [28] V.I. Dybkov, J. Mater. Sci. 21 (9), 3078-3084 (1986).
  • [29] V.I. Dybkov, J. Mater. Sci. 21 (9), 3085-3090 (1986).
  • [30] B. Predel, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, 1998 Springer, Berlin.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b191f74-766f-41f3-997e-d60a8333c508
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.