PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative analysis of hybrid RF models for efficient lithology prediction in hard rock tunneling using TBM working parameters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the escalating demand for underground mining and infrastructure construction, the optimization of tunnel construction has emerged as a primary concern for researchers. The geological conditions encountered during the excavation of hard rock tunnels using tunnel boring machines (TBM) significantly impact construction efficiency and cost-effectiveness. The existing lithology testing methods need to be more efficient in aligning with TBM operational efficiency. In recent years, the rapid advancement of artificial intelligence has paved the way for its integration into numerous domains, including tunnel engineering. To address this issue, this study proposes three innovative hybrid RF-based intelligent models, namely PSO-RF, ALO-RF, and GWO-RF, for the precise prediction of lithology in hard rock tunnels using TBM working parameters. The TBM operating parameters of the Jilin Yinsong Water Supply Project serve as the basis for this investigation. Twelve distinct characteristic parameters relevant to the lithology of the tunnel working face were carefully selected as input parameters for lithology prediction. Comparative analysis of the three hybrid models reveals that GWO-RF demonstrates exceptional lithology prediction performance (ACC = 0.999924; PREA = 0.0.9999976; RECA = 0.999775; F1A = 0.999876; Kappa = 0.999911), whereas PSO-RF and ALO-RF exhibit slightly inferior performance. Nonetheless, all three hybrid models exhibit a significant improvement in prediction accuracy compared to the unoptimized RF model. The research findings presented herein facilitate the swift determination of TBM working surface lithology, enabling timely adjustment of TBM working parameters, reducing equipment wear and tear, and enhancing construction efficiency.
Czasopismo
Rocznik
Strony
1847--1866
Opis fizyczny
Bibliogr. 100 poz.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
Bibliografia
  • 1. Abu El-Magd SA, Ali SA, Pham QB (2021) Spatial modeling and susceptibility zonation of landslides using random forest, naive bayes and K-nearest neighbor in a complicated terrain. Earth Sci Inform 14:1227-1243. https://doi.org/10.1007/s12145-021-00653-y
  • 2. Afradi A, Ebrahimabadi A, Hallajian T (2019) Prediction of the penetration rate and number of consumed disc cutters of tunnel boring machines (TBMs) using artificial neural network (ANN) and support vector machine (SVM)—case study: Beheshtabad water conveyance tunnel in iran. Asian J Water Environ Pollut 16(1):49-57
  • 3. Amirsadri S, Mousavirad SJ, Ebrahimpour-Komleh H (2018) A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training. Neural Comput Appl 30(12):3707-3720
  • 4. Armaghani DJ, Mohamad ET, Narayanasamy MS, Narita N, Yagiz S (2017) Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn Undergr Space Technol 63:29-43
  • 5. Armaghani DJ, Koopialipoor M, Marto A, Yagiz S (2019) Application of several optimization techniques for estimating TBM advance rate in granitic rocks. J Rock Mech Geotech Eng 11(4):779-789
  • 6. Ayawah PE, Sebbeh-Newton S, Azure JW, Kaba AG, Anani A, Bansah S, Zabidi H (2022) A review and case study of artificial intelligence and machine learning methods used for ground condition prediction ahead of tunnel boring machines. Tunn Undergr Space Technol 125:104497
  • 7. Benesty J, Chen J, Huang Y (2008) On the importance of the Pearson correlation coefficient in noise reduction. IEEE Trans Audio Speech Lang Process 16(4):757-765
  • 8. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123-140
  • 9. Breiman L (2001) Random forests. Mach Learn 45(1):5-32
  • 10. Castro BM, Monteiro UA, Gutiérrez RH, de SS Martins DH, Vaz LA (2022) Numerical and experimental correlation of a catamaran’s vibration modes using supervised machine learning. Ocean Eng 259:111838
  • 11. Chen X, Weng C, Du X, Yang J, Gao D, Wang R (2023a) Prediction of the rate of penetration in offshore large-scale cluster extended reach wells drilling based on machine learning and big-data techniques. Ocean Eng 285:115404
  • 12. Chen ZS, Lam JSL, Xiao Z (2023b) Prediction of harbour vessel fuel consumption based on machine learning approach. Ocean Eng 278:114483
  • 13. Chung H, Lee IM, Jung JH, Park J (2019) Bayesian networks-based shield TBM risk management system: methodology development and application. KSCE J Civ Eng 23(1):452-465
  • 14. Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing, pp 1-4
  • 15. Dehghani M, Seifi A, Riahi-Madvar H (2019) Novel forecasting models for immediateshort-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization. J Hydrol 576:698-725
  • 16. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. proceedings of the sixth international symposium on micro machine and human science, IEEE, New York, pp 4-6
  • 17. Elton DC, Boukouvalas Z, Butrico MS, Fuge MD, Chung PW (2018) Applying machine learning techniques to predict the properties of energetic materials. Sci Rep 8(1):1-12
  • 18. Entacher M, Winter G, Galler R (2013) Cutter force measurement on tunnel boring machines-implementation at Koralm tunnel. Tunn Undergr Space Technol 38:487-496
  • 19. Ewees AA, Abd El Aziz M, Hassanien AE (2019) Chaotic multiverse optimizer-based feature selection. Neural Comput Appl 31(4):991-1006
  • 20. Faris H, Hassonah MA, Al-Zoubi AM, Mirjalili S, Aljarah I (2018) A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput Appl 30(8):2355-2369
  • 21. Feng S, Chen Z, Luo H, Wang S, Zhao Y, Liu L, Jing L (2021) Tunnel boring machines (TBM) performance prediction: a case study using big data and deep learning. Tunn Undergr Space Technol 110:103636
  • 22. Festa D, Broere W, Bosch JW (2015) Kinematic behaviour of a tunnel boring machine in soft soil: theory and observations. Tunn Undergr Space Technol 49:208-217
  • 23. Gao X, Bin Z, Ya X (2016) Design and experiment of fiber current measuring system applied on TBM geological prediction. In: 2016 12th IEEE/ASME international conference on mechatronic and embedded systems and applications (MESA). IEEE, pp 1-4
  • 24. Gao X, Shi M, Song X, Zhang C, Zhang H (2019) Recurrent neural networks for real-time prediction of TBM operating parameters. Autom Constr 98:225-235
  • 25. Ghadge RR, Prakash S (2021) Investigation and prediction of hybrid composite leaf spring using deep neural network based rat swarm optimization. In: Mechanics based design of structures and machines, pp1-30
  • 26. Gong QM, Yin LJ, She QR (2013) TBM tunneling in marble rock masses with high in situ stress and large groundwater inflow: a case study in China. Bull Eng Geol Env 72(2):163-172
  • 27. Guo D, Li J, Jiang SH, Li X, Chen Z (2022) Intelligent assistant driving method for tunnel boring machine based on big data. Acta Geotech 17(4):1019-1030
  • 28. Huang J, Xue J (2022) Optimization of svr functions for flyrock evaluation in mine blasting operations. Environ Earth Sci 81(17):434
  • 29. Huang J, Zhou M, Zhang J, Ren J, Vatin NI, Sabri MMS (2022a) Development of a new stacking model to evaluate the strength parameters of concrete samples in laboratory. Iran J Sci Technol Trans Civ Eng 46(6):4355-4370
  • 30. Huang J, Zhou M, Zhang J, Ren J, Vatin NI, Sabri MMS (2022b) The use of GA and PSO in evaluating the shear strength of steel fiber reinforced concrete beams. KSCE J Civ Eng 26(9):3918-3931
  • 31. Huang J, Zhang J, Li X, Qiao Y, Zhang R, Kumar GS (2023) Investigating the effects of ensemble and weight optimization approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete. Road Mater Pavement Des 24(8):1939-1959
  • 32. Jebli I, Belouadha FZ, Kabbaj MI, Tilioua A (2021) Prediction of solar energy guided by pearson correlation using machine learning. Energy 224:120109
  • 33. Jing LJ, Li JB, Yang C, Chen S, Zhang N, Peng XX (2019) A case study of TBM performance prediction using field tunnelling tests in limestone strata. Tunn Undergr Space Technol 83:364-372
  • 34. Jing LJ, Li JB, Zhang N, Chen S, Yang C, Cao HB (2021) A TBM advance rate prediction method considering the effects of operating factors. Tunn Undergr Space Technol 107:103620
  • 35. Jung JH, Chung H, Kwon YS, Lee IM (2019) An ANN to predict ground condition ahead of tunnel face using TBM operational data. KSCE J Civ Eng 23(7):3200-3206
  • 36. Kaveh A, Seddighian MR (2022) Domain decomposition of finite element models utilizing eight meta-heuristic
  • 37. algorithms: a comparative study. Mech Based Des Struct Mach 50(8):2616-2634
  • 38. Kavzoglu T, Bilucan F (2023) Effects of auxiliary and ancillary data on LULC classification in a heterogeneous environment using optimized random forest algorithm. Earth Sci Inform 16:415-435. https://doi.org/10.1007/s12145-022-00874-9
  • 39. Koopialipoor M, Tootoonchi H, Jahed Armaghani D, Tonnizam Mohamad E, Hedayat A (2019) Application of deep neural networks in predicting the penetration rate of tunnel boring machines. Bull Eng Geol Env 78(8):6347-6360
  • 40. Koopialipoor M, Fahimifar A, Ghaleini EN, Momenzadeh M, Arma-ghani DJ (2020) Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance. Eng Comput 36(1):345-357
  • 41. Lasisi A, Sadiq MO, Balogun I, Tunde-Lawal A, Attoh-Okine N (2019) A boosted tree machine learning alternative to predictive evaluation of nondestructive concrete compressive strength. In: 2019 18th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 321-324
  • 42. Laurie A, Anderlini E, Dietz J, Thomas G (2021) Machine learning for shaft power prediction and analysis of fouling related performance deterioration. Ocean Eng 234:108886
  • 43. Li JB (2019) TBM structure and application. China Communications Press Co. Ltd., Beijing, pp 43-101
  • 44. Li S, Liu B, Xu X, Nie L, Liu Z, Song J, Fan K (2017) An overview of ahead geological prospecting in tunneling. Tunn Undergr Space Technol 63:69-94
  • 45. Li J, Li P, Guo D, Li X, Chen Z (2021) Advanced prediction of tunnel boring machine performance based on big data. Geosci Front 12(1):331-338
  • 46. Li C, Zhou J, Du K, Dias D (2023) Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms. Int J Min Sci Technol 33(8):1019-1036
  • 47. Liu B, Wang R, Zhao G, Guo X, Wang Y, Li J, Wang S (2020a) Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm. Tunn Undergr Space Technol 95:103103
  • 48. Liu B, Yang H, Karekal S (2020b) Effect of water content on argil-lization of mudstone during the tunnelling process. Rock Mech Rock Eng 53(2):799-813
  • 49. Liu Q, Wang X, Huang X, Yin X (2020c) Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data. Tunn Undergr Space Technol 106:103595
  • 50. Liu Z, Li L, Fang X, Qi W, Shen J, Zhou H, Zhang Y (2021) Hardrock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network. Autom Constr 125:103647
  • 51. Liu W, Li A, Liu C (2022) Multi-objective optimization control for tunnel boring machine performance improvement under uncertainty. Autom Constr 139:104310
  • 52. Mahmoodzadeh A, Mohammadi M, Ibrahim HH, Abdulhamid SN, Ali HFH, Hasan AM, Mahmud H (2021) Machine learning forecasting models of disc cutters life of tunnel boring machine. Autom Constr 128:103779
  • 53. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80-98
  • 54. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46-61
  • 55. Nguyen H, Bui XN, Tran QH, Van Hoa P, Nguyen DA, Hoa LTT, Le QT, Do NH, Bao TD, Bui HB, Moayedi H (2020) A comparative study of empirical and ensemble machine learning algorithms in predicting air over-pressure in open-pit coal mine. Acta Geophys 68:325-336
  • 56. Nguyen H, Bui XN, Choi Y, Lee CW, Armaghani DJ (2021) A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines. Nat Resour Res 30:191-207
  • 57. Ninić J, Freitag S, Meschke G (2017) A hybrid finite element and surrogate modelling approach for simulation and monitoring supported TBM steering. Tunn Undergr Space Technol 63:12-28
  • 58. Qiu Y, Zhou J (2023a) Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model. Acta Geotech 18:6655-6685
  • 59. Qiu Y, Zhou J (2023b) Short-term rockburst damage assessment in burst-prone mines: an explainable XGBOOST hybrid model with SCSO algorithm. Rock Mech Rock Eng 56:8745-8770
  • 60. Ramoni M, Anagnostou G (2011) The interaction between shield, ground and tunnel support in TBM tunnelling through squeezing ground. Rock Mech Rock Eng 44(1):37-61
  • 61. Sass I, Burbaum U (2009) A method for assessing adhesion of clays to tunneling machines. Bull Eng Geol Env 68(1):27-34
  • 62. Shahrour I, Zhang W (2021) Use of soft computing techniques for tunneling optimization of tunnel boring machines. Undergr Space 6(3):233-239
  • 63. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427-437
  • 64. Su T, Zhang S (2021) Object-based crop classification in Hetao plain using random forest. Earth Sci Inform 14:119-131. https://doi. org/10.1007/s12145-020-00531-z
  • 65. Sun W, Wang X, Wang L, Zhang J, Song X (2016) Multidisciplinary design optimization of tunnel boring machine considering both structure and control parameters under complex geological conditions. Struct Multidiscip Optim 54(4):1073-1092
  • 66. Tao H, Jingcheng W, Langwen Z (2015) Prediction of hard rock TBM penetration rate using random forests. In: The 27th Chinese control and decision conference (2015 CCDC). IEEE, pp 3716-3720
  • 67. Tehrany MS, Jones S, Shabani F (2019) Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. CATENA 175:174-192
  • 68. Van Houdt G, Mosquera C, Nápoles G (2020) A review on the long short-term memory model. Artif Intell Rev 53:5929-5955
  • 69. Wang L (ed) (2005) Support vector machines: theory and applications, vol 177. Springer
  • 70. Wang TY, Zhang K, Sun H, Wu YH, Zhao KJ (2010) Analysis on the stress and failures of disc cutter of full face rock tunnel boring machine. In: Advanced materials research. Trans Tech Publications Ltd., vol 102, pp 223-226
  • 71. Wang L, Qu C, Kang Y, Su C, Wang Y, Cai Z (2011) A mechanical model to estimate the disc cutter wear of tunnel boring machines. Adv Sci Lett 4(6-7):2433-2439
  • 72. Wang SM, Zhou J, Li CQ, Armaghani DJ, Li XB, Mitri HS (2021) Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques. J Cent South Univ 28(2):527-542
  • 73. Wei L, Khan M, Mehmood O, Dou Q, Bateman C, Magee DR, Cohn AG (2019) Web-based visualisation for look-ahead ground imaging in tunnel boring machines. Autom Constr 105:102830
  • 74. Wei M, Wang Z, Wang X, Peng J, Song Y (2021) Prediction of TBM penetration rate based on Monte Carlo-BP neural network. Neural Comput Appl 33(2):603-611
  • 75. Wu Y, Zhou Y (2022) Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete. Constr Build Mater 330:127298
  • 76. Xie Y, Jin L, Zhu C et al (2023) A semi-supervised coarse-to-fine approach with bayesian optimization for lithology identification. Earth Sci Inform. https://doi.org/10.1007/s12145-023-01014-7
  • 77. Xu H, Zhou J, G Asteris P, Jahed Armaghani D, Tahir MM (2019) Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate. Appl Sci 9(18):3715
  • 78. Xu C, Liu X, Wang E, Wang S (2021) Prediction of tunnel boring machine operating parameters using various machine learning algorithms. Tunn Undergr Space Technol 109:103699
  • 79. Yagiz S, Karahan H (2011) Prediction of hard rock TBM penetration rate using particle swarm optimization. Int J Rock Mech Min Sci 48(3):427-433
  • 80. Yagiz S, Gokceoglu C, Sezer E, Iplikci S (2009) Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Eng Appl Artif Intell 22(4-5):808-814
  • 81. Yamamoto T, Shirasagi S, Yamamoto S, Mito Y, Aoki K (2003) Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data. Tunn Undergr Space Technol 18(2-3):213-221
  • 82. Yang XS (2011) Metaheuristic optimization: algorithm analysis and open problems. In: Experimental algorithms: 10th international symposium, SEA 2011, Kolimpari, Chania, Crete, Greece, Proceedings 10. Springer, Berlin Heidelberg, pp 21-32
  • 83. Yang P, Yong W, Li C, Peng K, Wei W, Qiu Y, Zhou J (2023) Hybrid random forest-based models for earth pressure balance tunneling-induced ground settlement prediction. Appl Sci 13(4):2574
  • 84. Yousri DA, Abdelaty AM, Said LA, Abobakr A, Radwan AG (2017) Biological inspired optimization algorithms for cole-impedance parameters identification. AeuInt J Electron Commun 78:79-89
  • 85. Zeng J, Roy B, Kumar D, Mohammed AS, Armaghani DJ, Zhou J, Mohamad ET (2021) Proposing several hybrid PSO-extreme learning machine techniques to predict TBM performance. Eng Comput 1-17
  • 86. Zhang Q, Liu Z, Tan J (2019) Prediction of geological conditions for a tunnel boring machine using big operational data. Autom Constr 100:73-83
  • 87. Zhang P, Yin ZY, Jin YF, Chan TH (2020) A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest. Eng Geol 265
  • 88. Zhang Q, Hu W, Liu Z, Tan J (2020b) TBM performance prediction with Bayesian optimization and automated machine learning. Tunn Undergr Space Technol 103:103493
  • 89. Zhang P, Yin Z-Y, Jin Y-F (2022) Machine learning-based modelling of soil properties for geotechnical design: review, tool development and comparison. Arch Comput Method Eng 29:1229-1245
  • 90. Zhou J, Li X, Mitri HS (2016) Classification of rockburst in underground projects: comparison of ten supervised learning methods. J Comput Civ Eng 30(5):04016003
  • 91. Zhou J, Qiu Y, Armaghani DJ, Zhang W, Li C, Zhu S, Tarinejad R (2021a) Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques. Geosci Front 12(3):101091
  • 92. Zhou J, Qiu Y, Zhu S, Armaghani DJ, Khandelwal M, Mohamad ET (2021b) Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization. Undergr Space 6(5):506-515
  • 93. Zhou J, Qiu Y, Zhu S, Armaghani DJ, Li C, Nguyen H, Yagiz S (2021c) Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Eng Appl Artif Intell 97:104015
  • 94. Zhou J, Huang S, Qiu Y (2022a) Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations. Tunn Undergr Space Technol 124:104494
  • 95. Zhou J, Huang S, Zhou T, Armaghani DJ, Qiu Y (2022b) Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential. Artif Intell Rev 55(7):5673-5705
  • 96. Zhou J, Huang S, Wang M, Qiu Y (2022c) Performance evaluation of hybrid GA-SVM and GWO-SVM models to predict earthquake-induced liquefaction potential of soil: a multi-dataset investigation. Eng Comput 38:4197-4215
  • 97. Zhou J, Shen X, Qiu Y, Shi X, Khandelwal M (2022d) Cross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithms. Tunn Undergr Space Tech-nol 126:104570
  • 98. Zhou J, Shen X, Qiu Y, Shi X, Du K (2023a) Microseismic location in hardrock metal mines by machine learning models based on hyperparameter optimization using Bayesian optimizer. Rock Mech Rock Eng 56:8771-8788
  • 99. Zhou J, Yang P, Peng P, Khandelwal M, Qiu Y (2023b) Performance evaluation of rockburst prediction based on PSO-SVM, HHO-SVM, and MFO-SVM hybrid models. Min Metall Explor 40(2):617-635
  • 100. Zhou J, Yang P, Li C, Du K (2023c) Hybrid random forest-based models for predicting shear strength of structural surfaces based on surface morphology parameters and metaheuristic algorithms. Constr Build Mater 409:133911
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b17ded3-31a5-4cff-8b9e-08c67bd8be05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.