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ABSTRACT
Currently traffic control systems in place relay systems used microprocessor systems. A better solution may be the 
use of reversible logic in the synthesis of digital control systems. The main problem in the design of reversible logic is 
the transformation of the description of the system from the form of Boolean equations to the reversible form. The 
article presents error-proof reversible gates and software supporting the automatic synthesis process. The presented 
programs were developed and launched by the author of the article. The article presents the algorithms used to 
describe the description of circuits. The results of the programs’ operation and results of simulation of systems with 
reversible logic are presented.
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1. Introduction 

The use of programmable logic circuits (PLD) in railway 
automation systems significantly increases the reliability of these 
systems in relation to systems implemented in discrete technology 
and computer systems [5, 6, 9]. Increasing reliability results in an 
increase in the level of security, provided that harmful phenomena 
from digital systems based on programmable systems are eliminated. 
The second important factor in the use of digital systems (especially 
asynchronous automata) is the ability to “directly map” in PLD systems 
of proven solutions used in relay systems. The use of these systems is 
also more beneficial due to the power dissipated in the system. Power 
balance for asynchronous circuits more advantageous in relation to 
synchronous systems [12]. The technique of asynchronous circuits 
has been neglected for many years (due to major implementation 
difficulties - presented in this publication) despite its unquestionable 
advantages in relation to synchronous machines.

The advantages of asynchronous automata in relation to the 
synchronous technique include:

• Smaller, about 50% power loss
• Higher frequency of work
• Quick response without waiting for the clock
• Greater robustness (Robust)
• Possibility to create modular systems
• Possibility to connect multiple systems with their own 

independent clocks
During the design of devices the biggest problem turned out 

to be the complexity of the synthesis process of reversible logic 
circuits [12, 13, 14]. The article presents three programs designed 
by the author to support the design of digital systems:

•  program for coding automata without critical races 
• program to convert from boolean equations to Reed-Müller 

codes
• models of reversible gates in the QUCS program

The basic disadvantages of asynchronous systems include:
• No tools (EDA tools) to support the design of asynchronous 

automata
• Lack of system design methodology
• Difficulties in project verification
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2. The method of elementary 
conditions 

Th e presented method allows full automation of the process of 
unconditional encryption of asynchronous automata [11]. In this 
method, elementary transitions between states are compared. Th e 
idea of the method will be presented in a simple example of the 
machine described in the table of transitions (Table 1) 

Table 1. Sate table of the automata[own study]

X1 X2 X3 X4

1 1 4 1 2

2 2 2 1 2

3 1 2 3 4

4 2 4 3 4

Th e method compares (separately for each input vector) 
transitions between states having diff erent successors (diff erent 
target states in the transition table). For example, for the input 
vector X1, the table has the following transitions:

1 -> 1 , 2 -> 2 , 3 -> 1 , 4 -> 2
As a result of the comparison, conditions (codes) are created 

in which the states contained in one pair of transitions are 
assigned the value “0” to the other pair “1”, the remaining states 
are given the value “-”. In the presented example, the following 
conditions will be created for particular transitions:

[1234]
 10--
 10-0
 010-  (101-)
 1010

For the transitions specifi ed with the input vector X2, the 
following conditions will be created:

[1234]
10-1
1001
-1-0
-001

For the X3 input vector:
[1234]
1-0-
1-00
110-
1100

For the X4 input vector:
[1234]
1100
11-0
-100
-1-0

Minimization boils down to the combination of non-contradictory 
conditions, whereby the connection is made for conditions presented 
as in the above example or for their negation (condition 3 for input 

X1). Th e possibility of “sticking” negated conditions results from the 
freedom to accept “0” or “1” for states assigned to selected transitions.

[1234]
 1100
 1001
1010

In the asynchronous automaton, whose states will be coded 
according to minimized conditions, no critical races will occur. 
In the given example, no-negotiable transitions will be obtained 
when the following codes are adopted for each state:

State 1 – 111
State 2 – 100
State 3 – 001
State 4 – 010

Fig. 1. Program for coding asynchronous automata [own study]

2. Reed- Müller polynomials

Polynomial forms can be divided into:
• Reed-Müller polynomials - these are polynomials represented 

only by AND XOR and NOT operations. With the help of 
these three functions, each logic function can be represented

• Arithmetic polynomials - these are normal polynomials 
(arithmetic operations + and -), which return the result 0 or 
1 in the case when the variables are 0 or 1 eg f = x1 + x2 - 2 * 
x1 * x2 is the same as f = x1 XOR x2.  Each logical function 
corresponds to many arithmetic polynomials, and one logical 
function can be the same for one arithmetic polynomial. 
Arithmetic polynomial is considered to be better when its 
coeffi  cients are lower and when its products (components eg 
x1 * x2 * x3 - product of 3 variables) are smaller.

R-M polynomials consist only of simple variables (a, b, c, 
etc.) and constant “1” connected by the AND (logical quantity) 
and XOR (sum of modulo 2). It should be emphasized that there 
are no negations or brackets in polynomials of R-M. Th e Reed-
Muller system (R-M) is called a full system, i.e. it can present every 
function. It consists of goals XOR, AND and “1”, so the simplest 
(cheapest) technologically. Th anks to this, he has found a wide 
application in digital technology. Th e R-M function shows the 
following relationships

 (1)
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where:

Reed-Müller polynomials have found application in the 
design of diagnostic trees and synthesis of reversal logic systems. 
Th e conversion of functions from the canonical form to the R-M 
form is done as follows [3, 4]:

1. Th e given expression is brought to the form of CCF (normal 
conjunction form) or DCF (normal disjunctive form),

2. Using deMorgan’s laws, all alternatives (OR) are changed 
into conjunctions (AND). Th e result should be an expression 
consisting only of conjunction and negation (possibly with 
parentheses),

3. All negations are transformed into XOR using the formula: 
~f=1 f

4. Th e brackets are simplifi ed using the law of separation:

 (2)
Th e R-M polynomial can also be constructed directly from the 

truth vector using the appropriate transformation matrix f. Th e 
matrix designed to transform the truth vector of the function of 
one variable presents the formula:

 (3)

To transform functions with more variables, you need larger 
transformation matrices [2]. Th e next matrices are constructed 
from the primary matrix, determined by the formula 3 with the 
Kronecker product:

 (4)

For example, a matrix for transformation of 2-variable 
functions is constructed by multiplying two basic matrices:

 (5)

Th e Reed-Müller WRM vector is obtained from the WP truth 
vector by the following transformation:

 (6)

Using the properties that matrices f in modulo 2 arithmetic 
are their own reversals, the same matrices serve the inverse 
transformation, i.e. from the form of the Reed-Müller WRM vector 
to the truth vector WP:

 (7)

Th e method presented above was the basis for the author’s 
development of a program for determining Reed-Müller polynomials 
based on canonical functions. Fig. 2 shows screenshots of the program 
developed by the author. Th e program was implemented using the 
Borland Builder 5.0 environment.

Fig. 2. Program for generating the Reed-Müller tree [own study]

3. Modeling and simulation in 
the QUCS program

Soft ware QUCS (Quite Universal Circuit Simulator) is a free 
electronic circuits simulator. QUCS can simulate both analog 
and digital circuits. In the fi rst approach, reversing gates were 
modeled using analogue equivalents. Fig. 3 shows the Fredkin gate 
model built on the basis of switches implemented in the MOSFET 
technique[1]. Fig. 4 shows exemplary voltage courses obtained as 
a result of simulation.

Fig. 3. Fredkin’s gate built of MOS transistors [own study]
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Fig. 4. Simulation results in the QUCS program [own study]

3.1. Reversible gates  VHDL models

Th e Feynman‘s gate belongs to two-qubit gates. Th e gate symbol 
is shown in Fig. 1, Table 1 shows the gateway function. Th e following 
is a description of the gateway in the VHDL language [7].

Fig. 5. Feynman Gate [8]

Table 2. Feynman Gate trutch table [own study]

INPUTS OUTPUTS

A B P Q
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Library ieee; 
Use ieee std_logic.1164..all; 
Entity feynmang is 
Port(A, B: in std_logic; 
     P, Q: out std_logic); 
end feynmang; 
architecture fmg of feynmang is 
begin 
P<= A; 
Q<= A xor B; 
End fmg;

Th e Toff oli gate is a three-qubit quantum gate called the double-
controlled negation. Th e gate symbol is shown in Fig. 2. Table 2. 
presents the transition function of the gate.

Fig. 6. Toff oli gate [15]

Table 3. Toff oli Gate trutch table [own study]

INPUTS OUTPUTS

A B C P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Library ieee; 
Use ieee std_logic.1164..all; 
Entity toff olig is 
Port(A, B, C : in std_logic; 
     P, Q, R : out std_logic); 
end toff olig; 
architecture tg of toff olig is 
signal S : std_logic;
begin
P<= A;
Q<= B; 
S1<=A and B; 
R<= S xor C; 
End tg;

Unlike the Torff oli gate, which has two control bits and one 
intentional bit, Fredkin‘s gate has one control qubit and two target 
bits. Intentional bits are exchanged if the control bit is equal to 1, 
otherwise they remain unchanged. In the Table 3 the transitional 
function of the gate is shown, and its graphical symbol in Fig. 3.

Fig. 7. Fredkin gate [8]

Table 4. Freadkin Gate trutch table [own study]

INPUTS OUTPUTS

A B C P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Library ieee; 
Use ieee std_logic.1164..all;
Entity fredking is 
Port(A, B, C : in std_logic; 
     P, Q, R : out std_logic); 
end fredking; 
architecture fg of fredking is 
signal Abar, S1, S2, S3, S4 : std_logic; 
begin 
P<= A; 
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Abar<= not A; 
S1<=Abar and B; 
S2<= A and C; 
Q<= S1 xor S2; 
S3<= Abar and C; 
S4<= A and B; 
R<= S3 xor S4; 
End fg;

Fig. 8. Peres gate [10]

Table 5. Peres Gate trutch table [own study]

INPUTS OUTPUTS

A B C P Q R 
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

library ieee;
use ieee std_logic.1164.all;
entity peres is
port(A,B,C : in std_logic;
P,Q,R :out std_logic);
end peres;
architecture pg of peres is
signal S: std_logic
begin
P <= A;
S <= A and B;
Q <= A xor B;
R <= S xor C;
end pg;

Fig. 9 shows how to enter the model into the QUCS program.

Fig. 9. Toff oli gate in QUCS [own study]

4. Conclusion

Soft ware presented in the article allows shortening the process of 
designing digital circuits. At the same time, the presented methods 
enable creating reliable railway automation systems. On the internet 
you can fi nd programs for verifying reversible logic [16], however 
the presented method of simulation allows verifi cation of hybrid 
systems (combining reversible logic with classic logic). 
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