Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work investigated two titanium-based alloys with a constant tantalum content and variable contents of alloy additives - niobium and zirconium. The Ti-30Ta-10Zr-20Nb (wt.%) and Ti-30Ta-20Zr-10Nb (wt.%) alloys were obtained using a combination of powder metallurgy and arc melting methods. The influence of alloying additives on the structure and properties of the Ti-Ta-Nb-Zr system was studied using, among others: X-ray diffraction and scanning electron microscopy. The X-ray diffraction confirmed the single-β-phase structure of both alloys. In addition, the microscopic analysis revealed that a higher amount of zirconium favoured the formation of larger grains. However, the microhardness analysis indicated that the alloy with the higher niobium content had the higher microhardness. Importantly, the in vitro corrosion study revealed that the addition of niobium promoted the better corrosion resistance of the investigated alloy.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1137--1142
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
Twórcy
autor
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty Street 1 A, 41-500 Chorzów, Poland
autor
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty Street 1 A, 41-500 Chorzów, Poland
autor
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty Street 1 A, 41-500 Chorzów, Poland
autor
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty Street 1 A, 41-500 Chorzów, Poland
autor
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty Street 1 A, 41-500 Chorzów, Poland
autor
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland
autor
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland
Bibliografia
- [1] M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Prog. Mater. Sci. 54 (3), 397-425 (2009). DOI: https://doi.org/10.1016/j.pmatsci.2008.06.004
- [2] K. Wang, The use of titanium for medical applications in the USA, Mater. Sci. Eng. A, 213 (1-2), 134-137 (1996). DOI: https://doi.org/10.1016/0921-5093(96)10243-4.
- [3] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li, New developments of Ti-based alloys for biomedical applications. Materials 7 (3), 1709-1800 (2014). DOI: https://doi.org/10.3390/ma7031709
- [4] M. Szklarska, G. Dercz, J. Rak, W. Simka, B. Losiewicz, The influence of passivation type on corrosion resistance of Ti15Mo alloy in simulated body fluids, Arch. Metall. Mater. 60 (4), 2687-2693 (2015). DOI: https://doi.org/10.1515/amm-2015-0433
- [5] M. Szklarska, G. Dercz, W. Simka, B. Łosiewicz, A.C. impedance study on the interfacial properties of passivated Ti13Zr13Nb alloy in physiological saline solution, Surf. Interface Anal. 46 (10-11), 698-701 (2014). DOI: https://doi.org/10.1002/sia.5383
- [6] W. Simka, A. Krzakala, A.M. Korotin, I.S. Zhidkov, E.Z. Kurmaev, S.O. Cholakh, K. Kuna, G. Dercz, J. Michalska, K. Suchanek, T. Gorewoda, Modification of a Ti-Mo alloy surface via plasma electrolytic oxidation in a solution containing calcium and phosphorus, Electrochim. Acta 96, 180-190 (2013). DOI: https://doi.org/10.1016/j.electacta.2013.02.102
- [7] I. Matuła, G. Dercz, M. Zubko, J. Maszybrocka, J. Jurek-Suliga, S. Golba, I. Jędzrzejewska, Microstructure and porosity evolution of the Ti-35Zr biomedical alloy produced by elemental powder metallurgy, Materials 13 (20), 4539 (2020). DOI: https://doi.org/10.3390/ma13204539
- [8] J. Willis, S. Li, S.J. Crean, F.N. Barrak, Is titanium alloy Ti-6Al-4 V cytotoxic to gingival fibroblasts - A systematic review, Clin. Exp. Dent. Res. 7 (6), 1037-1044 (2021). DOI: https://doi.org/10.1002/cre2.444
- [9] K.J. Bozic, S.M. Kurtz, E. Lau, K. Ong, D.T.P. Vail, D.J. Berry, The epidemiology of revision total hip arthroplasty in the United States, J. Bone Joint Surg. Am. 91 (1), 128-133 (2009). DOI: https://doi.org/10.2106/JBJS.H.00155
- [10] S. Rao, T. Ushida, T. Tateishi, Y. Okazaki, S. Asao, Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells, Biomed. Mater. Eng. 6 (2), 79-86 (1996). DOI: https://doi.org/10.3233/BME-1996-6202
- [11] K.S. Cameron, V. Buchner, P.B. Tchounwou, Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: A literature review, Rev. Environ. Health 26 (2), 81-92 (2011). DOI: https://doi.org/10.1515/REVEH.2011.012
- [12] E. Denkhaus, K. Salnikow, Nickel essentiality, toxicity, and carcinogenicity, Crit. Rev. Oncol. 42 (1), 35-56 (2002). DOI: https://doi.org/10.1016/S1040-8428(01)00214-1
- [13] S. Buxton, E. German, K.E. Heim, T. Lyons-Darden, C.E. Schlekat, M.D. Taylor, A.R. Oller, Concise review of nickel human health toxicology and ecotoxicology, Inorganics 7 (7), 89 (2019). DOI: https://doi.org/10.3390/inorganics7070089
- [14] H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications, Mater. Sci. Eng. C 26 (8), 1269-1277 (2006). DOI: https://doi.org/10.1016/j.msec.2005.08.032.
- [15] A.M. Khorasani, M. Goldberg, E.H. Doeven, G. Littlefair, Titanium in biomedical applications - properties and fabrication: A review, J. Biomater Tissue Eng. 5 (8), 593-619 (2015). DOI: https://doi.org/10.1166/jbt.2015.1361
- [16] G. Dercz, I. Matuła, M. Zubko, J. Dercz, Phase composition and microstructure of new Ti-Ta-Nb-Zr biomedical alloys prepared by mechanical alloying method, Powder Diffr. 32 (S1), S186-S192 (2017). DOI: https://doi.org/10.1017/S0885715617000045
- [17] A.I. Karayan, S.W. Park, K.M. Lee, Corrosion behavior of TiTa-Nb alloys in simulated physiological media, Mater. Lett. 62 (12-13), 1843-1845 (2008). DOI: https://doi.org/10.1016/j.matlet.2007.10.028
- [18] M.K. Han, J.Y. Kim, M.J. Hwang, H.J. Song, Y.J. Park, Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys, Materials 8 (9), 5986-6003 (2015). DOI: https://doi.org/10.3390/ma8095287
- [19] Y. Guo, K. Georgarakis, Y. Yokoyama, A.R. Yavari, On the mechanical properties of TiNb based alloys, J. Alloys Compd. 571, 25-30 (2013). DOI: https://doi.org/10.1016/j.jallcom.2013.03.192
- [20] T. Tian, B. Dang, F. Li, K. Yang, D. Wei, P. Zhang, Microstructure, mechanical and antibacterial properties of TiNb-based alloy implanted by silver ions, Coatings 11 (10), (2021). DOI: https://doi.org/10.3390/coatings11101213
- [21] A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, C. Wen, A new look at biomedical Ti-based shape memory alloys, Acta Biomater. 8 (5), 1661-1669 (2012). DOI: https://doi.org/10.1016/j.actbio.2012.01.018
- [22] E. Delvat, D.M. Gordin, T. Gloriant, J.L. Duval, M.D. Nagel, Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys, J. Mech. Behav. Biomed. Mater. 1 (4), 345-351 (2008). DOI: https://doi.org/10.1016/j.jmbbm.2008.01.006
- [23] X. H. Zheng, J.H. Siu, X. Zhang, Z.Y. Yang, H.B. Wang, X.H. Tian, W. Cai, Thermal stability and high-temperature shape memory effect of Ti-Ta-Zr alloy, Scr. Mater. 68 (12), 1008-1011 (2013). DOI: https://doi.org/10.1016/j.scriptamat.2013.03.008
- [24] M. Takahashi, M. Kikuchi, O. Okuno, Grindability of Dental Cast Ti-Zr Alloys, Mat. Trans. 50 (4), 859-863 (2009). DOI: https://doi.org/10.2320/matertrans.MRA2008403
- [25] A.V. Dobromyslov, G.V. Dolgikh, Y. Dutkevich, T.L. Trenogina, Phase and structural transformations in Ti-Ta alloys, Phys. Met. Metallogr. 107 (5), 502-510 (2009). DOI: https://doi.org/10.1134/S0031918X09050111
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b147c74-294e-4781-b1c4-2fff15dd6c58