Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The COVID-19 pandemic has had a significant adverse impact on economic trends and the ability of enterprises to manage their global supply chain activities. One major challenge relates to handling disruptions in supply chain activities and conducting humanitarian logistics. When facing disruptions in the humanitarian supply chain, non-governmental organizations (NGOs) need to identify relevant scenarios for supply chain processes, both before and after the COVID-19 pandemic, to determine the performance outcomes of these processes. This study aims to measure the logistics performance of the humanitarian supply chain process before and after the COVID-19 pandemic. It adopts the performance criteria from the supply chain operations reference (SCOR) model and the humanitarian logistics success criteria found in the literature for operationalization. Subsequently, the study employs the spherical fuzzy analytic hierarchy process (SF-AHP) methodology as a decision-making tool to prioritize criteria for identifying each aspect of the humanitarian supply chain process. These metrics are valuable for organizations to determine which sustainable supply chain processes are better suited, based on predefined criteria, to mitigate disruptions caused by the pandemic. Document accuracy is identified as the most important metric criterion for the humanitarian supply chain process.
Rocznik
Tom
Strony
56--78
Opis fizyczny
Bibliogr. 80 poz., tab.
Twórcy
autor
- Barbaros Hayrettin Naval Architecture and Maritime Faculty Department of Maritime Transport Management Engineering
autor
- Bandirma Onyedi Eylul University, Maritime Faculty Department of Maritime Transportation Management Engineering Central Campus, 10200, Bandirma, Balikesir, Turkey
autor
- Aeronautics and Astronautics Faculty, Department of Aeronautics Administration Central Campus, 31200, Iskenderun, Hatay, Turkey
autor
- The Hong Kong Polytechnic University, Faculty of Business Department of Logistics and Maritime Studies M628, 6/F, Li Ka Shing Tower, Hung Hom, Kowloon, Hong Kong
Bibliografia
- 1. Akkawuttiwanich, P. & Yenradee, P. (2018) Fuzzy QFD approach for managing SCOR performance indicators. Computers and Industrial Engineering 122, pp. 189–201, doi: 10.1016/j.cie.2018.05.044.
- 2. Anlesinya, A., Dartey-Baah, K. & Amponsah-Tawiah, K. (2019) A review of empirical research on global talent management. FIIB Business Review 8 (2), pp. 147‒160, doi: 10.1177/2319714519836306.
- 3. Beamon, B.M. & Balcik, B. (2008) Performance measurement in humanitarian relief chains. International Journal of Public Sector Management 21 (1), pp. 4–25, doi: 10.1108/09513550810846087.
- 4. Beamon, B.M. & Kotleba, S.A. (2006) Inventory management support systems for emergency humanitarian relief operations in South Sudan. The International Journal of Logistics Management 17 (2), pp. 187–212, doi: 10.1108/09574090610689952.
- 5. Bölsche, D., Klumpp, M. & Abidi, H. (2013) Specific competencies in humanitarian logistics education. Journal of Humanitarian Logistics and Supply Chain Management 3 (2), pp. 99‒128, doi: 10.1108/JHLSCM-08-2012-0019.
- 6. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M. & Khalil, M. (2007) Lessons from Applying the Systematic Literature Review Process within the Software Engineering Domain. Journal of Systems and Software 80, pp. 571‒583, doi: 10.1016/j.jss.2006.07.009
- 7. Brown, L.X.Z. (2020) How to centre disability in the tech response to COVID-19. [Online] 20 July. Available from: www.brookings.edu/techstream/how-to-center-disabilityin-the-tech-response-to-COVID-19/ [Accessed: April 15, 2024].
- 8. Celik, E., Gumus, A.T. & Alegoz, M. (2014) A trapezoidal type-2 fuzzy MCDM method to identify and evaluate critical success factors for humanitarian relief logistics management. Journal of Intelligent & Fuzzy Systems 27 (6), pp. 2847‒2855, doi: 10.3233/IFS-141246.
- 9. Chandes, J. & Paché, G. (2010) Investigating humanitarian logistics issues: From operations management to strategic action. Journal of Manufacturing Technology Management 21 (3), pp. 320–340, doi: 10.1108/17410381011024313.
- 10. APICS (2017) APICS Supply Chain Operations Reference Model: SCOR, Version 12.0.
- 11. Davidson, A.L. (2006) Key performance indicators in humanitarian logistics. Master’s Thesis, Massachusetts Institute of Technology, http://18.7.29.232/handle/1721.1/35540.
- 12. Dubey, R., Bryde, D.J., Dwivedi, Y.K., Graham, G. & Foropon, C. (2022) Impact of artificial intelligence-driven big data analytics culture on agility and resilience in humanitarian supply chain: A practice-based view. International Journal of Production Economics 250, 108618, doi: 10.1016/J.IJPE.2022.108618.
- 13. DuBois, M., Wake, C., Sturridge, S. & Bennett, C. (2015) The Ebola response in West Africa: exposing the politics and culture of international aid. Humanitarian Policy Group (HPG) Working Paper. London: ODI. Available from: https://odi.cdn.ngo/media/documents/9903.pdf.
- 14. Edwards, M. (1999) NGO performance ‒ what breeds success? New evidence from South Asia. World Development 27 (2), pp. 361–374, doi: 10.1016/S0305-750X(98)00125-9.
- 15. Fathalikhani, S., Hafezalkotob, A. & Soltani, R. (2020) Government intervention on cooperation, competition, and coopetition of humanitarian supply chains. Socio-Economic Planning Sciences 69, 100715, doi: 10.1016/j.seps. 2019.05.006.
- 16. Fritz Institute (2005) Logistics and the effective delivery of humanitarian relief. San Francisco, CA: Fritz Institute.
- 17. Gallardo-Gallardo, E., Nijs, S., Dries, N. & Gallo, P. (2015) Towards an understanding of talent management as a phenomenon-driven field using bibliometric and content analysis. Human Resource Management Review 25 (3), pp. 264‒279, doi: 10.1016/j.hrmr.2015.04.003.
- 18. Gallardo-Gallardo, E. & Thunnissen, M. (2016) Standing on the shoulders of giants? A critical review of empirical talent management research. Employee Relations 38 (1), pp. 31‒56, doi: 10.1108/ER-10-2015-0194.
- 19. Giedelmann-L, N., Guerrero, W.J. & Solano-Charris, E.L. (2022) System dynamics approach for food inventory policy assessment in a humanitarian supply chain. International Journal of Disaster Risk Reduction 81, 103286, doi: 10.1016/J.IJDRR.2022.103286.
- 20. Gil, J.C.S. & McNeil, S. (2015) Supply Chain Outsourcing in Response to Manmade and Natural Disasters in Colombia, a Humanitarian Logistics Perspective. Procedia Engineering 107, pp. 110–121, doi: 10.1016/j.proeng.2015.06.064.
- 21. Hedayati Mehdiabadi, A. & Li, J. (2016) Understanding talent development and implications for human resource development: An integrative literature review. Human Resource Development Review 15 (3), pp. 263‒294, doi: 10.1177/1534484316655667.
- 22. Holguín-Veras, J., Taniguchi, E., Jaller, M., Aros-Vera, F., Ferreira, F. & Thompson, R.G. (2014) The Tohoku disasters: Chief lessons concerning the post disaster humanitarian logistics response and policy implications. Transportation Research Part A: Policy and Practice 69, pp. 86–104, doi: 10.1016/j.tra.2014.08.003.
- 23. Huan, S.H., Sheoran, S.K. & Wan, G. (2004) A review and analysis of supply chain operations reference (SCOR) model. Supply Chain Management 9 (1), pp. 23–29, doi: 10.1108/13598540410517557.
- 24. Humanitarian Policy Group (2020) Humanitarian Policy Group Annual Report 2019‒2020. [Online]. Available from: https://cdn.odi.org/media/documents/Humanitarian_ Policy_Group_annual_report_20192020.pdf [Accessed: April 15, 2024].
- 25. Hwang, B.N., Chen, T.T. & Lin, J.T. (2016) 3PL selection criteria in integrated circuit manufacturing industry in Taiwan. Supply Chain Management: An International Journal 21 (1), pp. 103‒124, doi: 10.1108/SCM-03-2014-0089.
- 26. IFRC (2012) World disasters report 2011. International Federation of Red Cross and Red Crescent Societies, Geneva.
- 27. Ju, Y., Wang, A. & Liu, X. (2012) Evaluating emergency response capacity by fuzzy AHP and 2-tuple fuzzy linguistic approach. Expert Systems with Applications 39 (8), pp. 6972–6981, doi: 10.1016/j.eswa.2012.01.061.
- 28. Khodaee, V., Kayvanfar, V. & Haji, A. (2022) A humanitarian cold supply chain distribution model with equity consideration: The case of COVID-19 vaccine distribution in the European Union. Decision Analytics Journal 4, 100126, doi: 10.1016/J.DAJOUR.2022.100126.
- 29. Kitchenham, B. (2004) Procedures for performing systematic reviews. Keele University Technical Report TR/SE0401. Keele University, UK.
- 30. Kitchenham, B.A. & Charters, S. (2007) Guidelines for performing systematic literature reviews in software engineering. EBSE Technical Report EBSE-2007-01. Keele University, UK.
- 31. Kottala, S.Y. & Herbert, K. (2019) An empirical investigation of supply chain operations reference model practices and supply chain performance: Evidence from manufacturing sector. International Journal of Productivity and Performance Management 69 (9), pp. 1925‒1954, doi: 10.1108/ IJPPM-09-2018-0337.
- 32. Kovács, G. & Spens, K.M. (2007) Humanitarian logistics in disaster relief operations. International Journal of Physical Distribution and Logistics Management 37 (2), pp. 99– 114, doi: 10.1108/09600030710734820.
- 33. Kovács, G. & Spens, K.M. (2009) Identifying challenges in humanitarian logistics. International Journal of Physical Distribution and Logistics Management 39 (6), pp. 506– 528, doi: 10.1108/09600030910985848.
- 34. Kovács, G. & Spens, K.M. (2011) Trends and developments in humanitarian logistics ‒ a gap analysis. International Journal of Physical Distribution and Logistics Management 41(1), pp. 32–45, doi: 10.1108/09600031111101411/full/pdf.
- 35. Kravariti, F. & Johnston, K. (2020) Talent management: a critical literature review and research agenda for public sector human resource management. Public Management Review 22 (1), pp. 75‒95, doi: 10.1080/14719037.2019.1638439.
- 36. Kutlu Gündoğdu, F. & Kahraman, C. (2019) Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent & Fuzzy Systems 36 (1), pp. 337–352, doi: 10.3233/JIFS-181401.
- 37. Kutlu Gündoğdu, F. & Kahraman, C. (2020a) A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Computing 24 (6), pp. 4607–4621, doi: 10.1007/s00500-019-04222-w.
- 38. Kutlu Gündoğdu, F. & Kahraman, C. (2020b) Spherical fuzzy analytic hierarchy process (AHP) and its application to industrial robot selection. Advances in Intelligent Systems and Computing 1029, pp. 988–996, doi: 10.1007/978-3- 030-23756-1_117.
- 39. Li, L., Su, Q. & Chen, X. (2011) Ensuring supply chain quality performance through applying the SCOR model. International Journal of Production Research 49 (1), pp. 33– 57, doi: 10.1080/00207543.2010.508934.
- 40. Lima-Junior, F.R. & Carpinetti, L.C.R. (2016) Combining SCOR® model and fuzzy TOPSIS for supplier evaluation and management. International Journal of Production Economics 174, pp. 128–141, doi: 10.1016/j.ijpe.2016.01.023.
- 41. Liu, M., Lin, T., Chu, F., Zheng, F. & Chu, C. (2022) A New Stochastic Bi-level Optimization Model for Post-disaster Relief Scheduling Problem in Sustainable Humanitarian Supply Chains with Uncertain Relief Supplies and Demands. IFAC-PapersOnLine 55 (10), pp. 2481–2486, doi: 10.1016/J.IFACOL.2022.10.081.
- 42. Lockamy, A. & McCormack, K. (2004) Linking SCOR planning practices to supply chain performance: An exploratory study. International Journal of Operations and Production Management 24 (12), pp. 1192–1218, doi: 10.1108/01443570410569010.
- 43. Loree, N. & Aros-Vera, F. (2018) Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics. Transportation Research Part E: Logistics and Transportation Review 116 (June), pp. 1–24, doi: 10.1016/j.tre.2018.05.003.
- 44. Lu, Q., Goh, M. & De Souza, R. (2016) A SCOR framework to measure logistics performance of humanitarian organizations. Journal of Humanitarian Logistics and Supply Chain Management 6 (2), pp. 222–239, doi: 10.1108/ JHLSCM-09-2015-0038.
- 45. Nagurney, A., Flores, E.A. & Soylu, C. (2016) A Generalized Nash Equilibrium network model for post-disaster humanitarian relief. Transportation Research Part E: Logistics and Transportation Review 95, pp. 1‒18, doi: 10.1016/j. tre.2016.08.005.
- 46. Neuman, W.L. (2014) Social Research Methods: Qualitative and Quantitative Approaches (7th ed.). Essex: Pearson.
- 47. Okoli, C. & Schabram, K. (2010) A Guide to Conducting a Systematic Literature Review of Information Systems Research. SSRN Electronic Journal 10, doi: 10.2139/ ssrn.1954824.
- 48. Oloruntoba, R. (2005) A wave of destruction and the waves of relief: issues, challenges and strategies. Disaster Prevention and Management: An International Journal 14 (4), pp. 506‒521, doi: 10.1108/09653560510618348.
- 49. Oloruntoba, R. (2010) An analysis of the Cyclone Larry emergency relief chain: Some key success factors. International Journal of Production Economics 126 (1), pp. 85– 101, doi: 10.1016/j.ijpe.2009.10.013.
- 50. Oloruntoba, R. & Gray, R. (2006) Humanitarian aid: An agile supply chain? Supply Chain Management 11 (2), pp. 115–120, doi: 10.1108/13598540610652492.
- 51. Özdamar, L. & Ertem, M.A. (2015) Models, solutions and enabling technologies in humanitarian logistics. European Journal of Operational Research 244 (1), pp. 55–65, doi: 10.1016/j.ejor.2014.11.030.
- 52. Palma-Mendoza, J.A. (2014) Analytical hierarchy process and SCOR model to support supply chain re-design. International Journal of Information Management 34 (5), pp. 634–638, doi: 10.1016/j.ijinfomgt.2014.06.002.
- 53. Patil, A., Madaan, J., Chan, F.T.S. & Charan, P. (2022) Advancement of performance measurement system in the humanitarian supply chain. Expert Systems with Applications 206, 117844, doi: 10.1016/J.ESWA.2022.117844.
- 54. Persson, F. (2011) SCOR template ‒ A simulation based dynamic supply chain analysis tool. International Journal of Production Economics 131 (1), pp. 288–294, doi: 10.1016/j.ijpe.2010.09.029.
- 55. Persson, F. & Araldi, M. (2009) The development of a dynamic supply chain analysis tool-Integration of SCOR and discrete event simulation. International Journal of Production Economics 121 (2), pp. 574–583, doi: 10.1016/j. ijpe.2006.12.064
- 56. Pettit, S.J. & Beresford, A.K.C. (2005) Emergency relief logistics: An evaluation of military, non-military and composite response models. International Journal of Logistics Research and Applications 8 (4), pp. 313–331, doi: 10.1080/13675560500407325
- 57. Pettit, S. & Beresford, A. (2009) Critical success factors in the context of humanitarian aid supply chains. International journal of physical distribution & logistics management 39 (6), pp. 450‒468, doi: 10.1108/09600030910985811.
- 58. Priestman, T.J. & Baum, M. (1976) Evaluation of quality of life in patients receiving treatment for advanced breast cancer. The Lancet 307 (7965), pp. 899–901, doi: 10.1016/ S0140-6736(76)92112-7.
- 59. Röder, A. & Tibken, B. (2006) A methodology for modelling inter-company supply chains and for evaluating a method of integrated product and process documentation. European Journal of Operational Research 169, pp. 1010–1029, 10.1016/j.ejor.2005.02.006.
- 60. Rodríguez, J.A., Giménez, C. & Arenas, D. (2016) Cooperative initiatives with NGOs in socially sustainable supply chains: How is inter-organizational fit achieved? Journal of Cleaner Production 137, pp. 516–526, doi: 10.1016/j. jclepro.2016.07.115.
- 61. Roh, S., Lin, H.H. & Jang, H. (2022) Performance indicators for humanitarian relief logistics in Taiwan. The Asian Journal of Shipping and Logistics 38 (3), pp. 173‒180, doi: 10.1016/j.ajsl.2022.06.002.
- 62. Sarma, D., Bera, U.K. & Das, A. (2019) A mathematical model for resource allocation in emergency situations with the co-operation of NGOs under uncertainty. Computers and Industrial Engineering 137, 106000, doi: 10.1016/j. cie.2019.106000
- 63. Scholten, K., Scott, P.S. & Fynes, B. (2010) (Le)agility in humanitarian aid (NGO) supply chains. International Journal of Physical Distribution & Logistics Management 40 (8/9), pp. 623–635, doi: 10.1108/09600031011079292.
- 64. Seneviratne, K., Baldry, D. & Pathirage, C. (2010) Disaster knowledge factors in managing disasters successfully. International Journal of Strategic Property Management 14 (4), pp. 376‒390, doi: 10.3846/ijspm.2010.28
- 65. Seuring, S. & Gold, S. (2012) Conducting content‐analysis based literature reviews in supply chain management. Supply Chain Management: An International Journal 17 (5), pp. 544‒555, doi: 1108/13598541211258609.
- 66. Stekelorum, R., Laguir, I. & Elbaz, J. (2020) Cooperation with international NGOs and supplier assessment: Investigating the multiple mediating role of CSR activities in SMEs. Industrial Marketing Management 84, pp. 50–62, doi: 10.1016/j.indmarman.2019.04.001
- 67. Supply Chain Council ‒ SCC (2012) Supply Chain Operations Reference Model SCOR, version 11. United States of America.
- 68. Tarique, I. & Schuler, R.S. (2010) Global talent management: Literature review, integrative framework, and suggestions for further research. Journal of World Business 45 (2), pp. 122‒133, doi: 10.1016/j.jwb.2009.09.019.
- 69. Tatham, P. & Houghton, L. (2011) The wicked problem of humanitarian logistics and disaster relief aid. Journal of Humanitarian Logistics and Supply Chain Management 1 (1), pp. 15–31, doi: 10.1108/20426741111122394.
- 70. Tatham, P. & Spens, K. (2011) Towards a humanitarian logistics knowledge management system. Disaster Prevention and Management: An International Journal 20 (1), pp. 6–26, doi: 10.1108/09653561111111054.
- 71. Thomas, A. & Kopczak, L. (2005) From Logistics to Supply Chain Management: The path forward to the humanitarian sector. Fritz Institute 15 (1), pp. 1‒15.
- 72. Thunnissen, M. & Gallardo-Gallardo, E. (2019) Rigor and relevance in empirical TM research: Key issues and challenges. BRQ Business Research Quarterly 22 (3), pp. 171‒180, doi: 10.1016/j.brq.2019.04.0.
- 73. Tramarico, C.L., Salomon, V.A.P. & Marins, F.A.S. (2017) Multi-criteria assessment of the benefits of a supply chain management training considering green issues. Journal of Cleaner Production 142, pp. 249–256, doi: 10.1016/j. jclepro.2016.05.112.
- 74. Turban, E., Outland, J., King, D., Lee, J.K., Liang, T.P. & Turban, D.C. (2017) Electronic commerce 2018. A managerial and social networks perspective. Springer Cham, doi: 10.1007/978-3-319-58715-8.
- 75. Vega, D. & Roussat, C. (2015) Humanitarian logistics: The role of logistics service providers. International Journal of Physical Distribution and Logistics Management 45 (4), pp. 352–375, doi: 10.1108/IJPDLM-12-2014-0309.
- 76. Wang, W.Y.C., Chan, H.K. & Pauleen, D.J. (2010) Aligning business process reengineering in implementing global supply chain systems by the SCOR model. International Journal of Production Research 48 (19), pp. 5647–5669, doi: 10.1080/00207540903168090.
- 77. Whybark, D.C. (2007) Issues in managing disaster relief inventories. International Journal of Production Economics 108 (1‒2), pp. 228‒235, doi: 10.1016/j.ijpe.2006.12.012.
- 78. World Meteorological Organization (2021) State of Global Climate Report. [Online]. Available from: https://library. wmo.int/records/item/56300-state-of-the-global-climate2021 [Accessed: April 15, 2024].
- 79. Zhou, H., Benton, W.C., Schilling, D.A. & Milligan, G.W. (2011a) Supply chain integration and the SCOR model. Journal of Business Logistics 32 (4), pp. 332–344, doi: 10.1111/j.0000-0000.2011.01029.x.
- 80. Zhou, Q., Huang, W. & Zhang, Y. (2011b) Identifying critical success factors in emergency management using a fuzzy DEMATEL method. Safety Science 49 (2), pp. 243–252, doi: 10.1016/j.ssci.2010.08.005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b13c124-fc98-45aa-a4eb-20498921c65e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.