PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability analysis of engineering/physical dynamic systems using residual energy function

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, an engineering/physical dynamic system including losses is analyzed inrelation to the stability from an engineer’s/physicist’s point of view. Firstly, conditions for a Hamiltonian to be an energy function, time independent or not, is explained herein. To analyze stability of engineering system, Lyapunov-like energy function, called residual energy function is used. The residual function may contain, apart from external energies, negative losses as well. This function includes the sum of potential and kinetic energies, which are special forms and ready-made (weak) Lyapunov functions, and loss of energies (positive and/or negative) of a system described in different forms using tensorial variables. As the Lypunov function, residual energy function is defined as Hamiltonian energy function plus loss of energies and then associated weak and strong stability are proved through the first time-derivative of residual energy function. It is demonstrated how the stability analysis can be performed using the residual energy functions in different formulations and in generalized motion space when available. This novel approach is applied to RLC circuit, AC equivalent circuit of Gunn diode oscillator for autonomous, and a coupled (electromechanical) example for nonautonomous case. In the nonautonomous case, the stability criteria can not be proven for one type of formulation, however, it can be proven in the other type formulation.
Rocznik
Strony
201--222
Opis fizyczny
Bibliogr. 29 poz., rys., wzory
Twórcy
autor
  • Ege University, Faculty of Engineering, Department of Electrical & Electronics Engineering 35100, Bornova-Izmir, Turkiye.
Bibliografia
  • [1] A. M. Lyapunov: The General Problem of the Stability of Motion, Taylor & Francis, London, 1992.
  • [2] N. Rouche, P. Habets and M. Laloy: Stability Theory by Liapunov’s Direct Method, Springer-Verlag, New York, 1977.
  • [3] T. Yoshizawa: Stability Theory by Liapunov’s Second Method, Mathematical Society of Japan, Tokyoi, 1966.
  • [4] W. Hahn: Stability of Motion, Springer-Verlag, Berlin, 1967.
  • [5] E. A. Barbashin and N. N. Krasovskii: On the stability of motion as a whole, Doklady Akademii Nauk SSSR 86: pp. 453-456, 1952. (in Russian).
  • [6] N. N. Krasovskii: Problems of the Theory of Stability of Motion (in Russian), 1959. English translation: Stanford University Press, Stanford, CA, 1963.
  • [7] J. P. Lasalle: Some extensions of Liapunov’s second method, IRE Transactions on Circuit Theory, CT-7, (1960), 520-527.
  • [8] A. Bacciotti and L. Rosier: Liapunov Functions and Stability in Control Theory, Lecture Notes in Control and Information Sciences, 267, Appl. Mech. Rev., 55, B88, 2002.
  • [9] R. I. Mclachlan, G. R. W. Quispel and N. Robidoux: Unified Approach to Hamiltonian Systems, Poisson Systems, Gradient Systems, and Systems with Lyapunov Functions or First Integrals, Physical Review Letters, 81(12), (1998), 2399-2403.
  • [10] R. Marino and S. Nicosia: Hamiltonian–Type Lyapunov Functions, IEEE Transactions on Automatic Control, AC-28(1), (1983).
  • [11] A. J. Van der Schaft and B. Maschke: The Hamiltonian formulation of energy-conserving physical systems with external ports, Archive für Elektronik und Übertragungstechnik, 49 (1995), 362-371.
  • [12] B. Maschke, R. Ortega and A. J. van der Schaft: Energy-Based Lyapunov Functions for Forced Hamiltonian Systems with Dissipation, IEEE Transactions on Automatic Control, 45(8), (2000).
  • [13] O. Elgerd: Control Systems Theory, McGraw-Hill Kogakusha LTD, Tokyo, 1967.
  • [14] H. Heuser: Gewöhnliche Differentialgleichungen, BG Teubner, Stuttgart, 1989.
  • [15] K. Dutton, S. Thomson and B. Barraclough: The Art of Control Engineering, Addison-Wesley Publishing Company, Harword, 1997.
  • [16] K. H. Khalil: Nonlinear Systems, Macmillan Publishing Company, New York, 1997.
  • [17] C. Civelek and U. Diemar: Stability Analysis using Energy Functions, 48. Internationales wissenschaftliches Kolloquim der Technischen Universität Ilmenau, Tagungsband, 427, 2003.
  • [18] T. L. Chow: Classical Mechanics. John Wiley & Sons, New York, 1995.
  • [19] H. GoldsteinOLDSTEIN: Classical Mechanics, 2nd ed. Addison Wesley Publishing Company, Massachusets, 1980.
  • [20] B. Brogilia, R. Lozano, B. Maschke and O. Egeland: Dissipative Systems Analysis and Control, 2nd ed. Springer, Heidelberg, 2007.
  • [21] R. Suesse and C. Civilek: Analysis of Engineering Systems by means of Lagrange and Hamilton Formalisms depending on contravariant, covariant tensorial variables, Forschung im Ingenieurwesen - Engineering Research, 68(1), (2003), 66-74.
  • [22] C. Civilek: Berechnung von elektrotechnischen Systemen mit Wandlern mittels erweitertem Lagrange – bzw. Hamilton-Formalismus, Wissenschaftsverlag Ilmenau, Ilmenau, 2001.
  • [23] R. Suesse and C. Civilek: Analysis of coupled dissipative dynamic systems of engineering using extended Hamiltonian H for classical and nonconservative Hamiltonian H∗n for higher order Lagrangian, Forschung im Ingenieurwesen-Engineering Research, 77(1-2), (2012), 1-11.
  • [24] B. Marx and R. Suesse: Theoretische Elektrotechnik (in fünf Bänden) - Band 1: Netzwerke und Elemente hoeherer Ordnung. VDI Verlag, Düsseldorf, 2012.
  • [25] R. Suesse, U. Diemar and P. Burger: Theoretische Elektrotechnik (in fünf Bänden) – Band 2: Elektrische Netzwerke und Elemente höherer Ordnung, Wissenschaftsverlag Thüringen, Langewiesen, 2013.
  • [26] R. Suesse and T. Stroehla: Theoretische Elektrotechnik (in fünf Bänden) – Band 3: Analyse und Synthese elektrotechnischer Systeme, 2. Überarbeitete und erweiterte Auflage, Wissenschaftsverlag Thüringen, Langewiesen, 2014.
  • [27] R. Suesse and U. Diemar: Theoretische Elektrotechnik (in fünf Bänden) – Band 4: Beschreibung, Berechnung und Synthese von Feldern, Wissenschaftsverlag Ilmenau, Ilmenau, 2000.
  • [28] R. Suesse and B. Marx: Theoretische Elektrotechnik (in fünf Bänden) – Band 5: Netzwerke-Berechnung und Synthese für vorgegebenes Bifurkationsverhalten. Wissenschaftsverlag Ilmenau, Ilmenau, 2000.
  • [29] J. Lesurf: Negative Resistance Oscillators, The Scots Guide to Electronics, School of Physics and Astronomy, Univ. of St. Andrews, Retrieved August 20, 2012.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b126cfb-f1f2-4b49-b85d-cc9c8f03c695
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.