PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel visual object descriptor using surf and clustering algorithms

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we propose a method for object description based on two wellknown clustering algorithms (k-means and mean shift) and the SURF method for keypoints detection. We also perform a comparison of these clustering methods in object description area. Both of these algorithms require one input parameter; k-means (k, number of objects) and mean shift (h, window). Our approach is suitable for images with a non-homogeneous background thus, the algorithm can be used not only on trivial images. In the future we will try to remove non-important keypoints detected by the SURF algorithm. Our method is a part of a larger CBIR system and it is used as a preprocessing stage.
Rocznik
Strony
37--46
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Institute of Computational Intelligence, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
  • [1] Bazarganigilani M., Optimized image feature selection using pairwise classifiers, Journal of Artificial Intelligence and Soft Computing Research 2011, 1, 147-153.
  • [2] Canny J., A computational approach to edge detection, Pattern Analysis and Machine Intelligence, IEEE Transactions 1986, 8(6), 679-698.
  • [3] Liu Y., Zhang D., Lu G., Ma W. Y., A survey of content-based image retrieval with high-level semantics. Pattern Recognition 2007, 40(1), 262-282.
  • [4] Gabryel M., Korytkowski, M., Scherer, R., Rutkowski L., Object detection by simple fuzzy classifiers generated by boosting, Artificial Intelligence and Soft Computing 2013, Springer International Publishing, 540-547.
  • [5] Nowak T., Najgebauer P., Rygał J., Scherer R., A Novel Graph-Based Descriptor for Object Matching, Artificial Intelligence and Soft Computing 2013, Springer International Publishing, 602-612.
  • [6] Gabryel M., Korytkowski M., Scherer R., Rutkowski L., Object detection by simple fuzzy classifiers generated by boosting, Artificial Intelligence and Soft Computing 2013, Springer International Publishing, 540-547.
  • [7] Rygał J., Najgebauer P., Romanowski J., Scherer R., Extraction of objects from images using density of edges as basis for GrabCut algorithm, Artificial Intelligence and Soft Computing 2013, Springer International Publishing, 613-623.
  • [8] Nowak T., Najgebauer P., Romanowski J., Gabryel M., Korytkowski M., Scherer R., Kostadinov D., Spatial keypoint representation for visual object retrieval, Artificial Intelligence and Soft Computing 2014, Springer International Publishing, 639-650.
  • [9] Rygał J., Romanowski J., Scherer R., Ferdowsi S., Novel Algorithm for Translation from Image Content to Semantic Form, Artificial Intelligence and Soft Computing 2014, Springer International Publishing, 783-792.
  • [10] Bay H., Tuytelaars T., Van Gool L., SURF: Speeded up robust features, Computer Vision-ECCV 2006, 404-417.
  • [11] Grycuk R., Gabryel M., Korytkowski M., Romanowski J., Scherer R., Improved digital image segmentation based on stereo vision and mean shift algorithm, Parallel Processing and Applied Mathematics 2014, 8384, 433-443.
  • [12] Grycuk R., Gabryel M., Korytkowski M., Scherer R., Voloshynovskiy S., From single image to list of objects based on edge and blob detection, Artificial Intelligence and Soft Computing 2014, 8468, 605-615.
  • [13] Grycuk R., Gabryel M., Korytkowski M., Scherer R., Content-based image indexing by data clustering and inverse document frequency, Beyond Databases, Architectures, and Structures 2014, 424, 374-383.
  • [14] Chromiak M., Stencel K., A data model for heterogeneous data integration architecture, Beyond Databases, Architectures, and Structures 2014, 547-556.
  • [15] Lowe D.G., Object recognition from local scale-invariant features, Computer Vision, 1999, 2, 1150-1157.
  • [16] Lowe D.G., Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision 2004, 60(2), 91-110.
  • [17] Evans C., Notes on the Opensurf Library, University of Bristol, Tech. Rep, 2009
  • [18] Cheng Y., Mean shift mode seeking, and clustering, Pattern Analysis and Machine Intelligence, 1995, 17(8), 790-799.
  • [19] Derpanis K.G., Mean shift clustering, Lecture Notes, 2005.
  • [20] Comaniciu D., Meer P., Mean shift: A robust approach toward feature space analysis, Pattern Analysis and Machine Intelligence 2002, 24(5), 603-619.
  • [21] MacQueen J., Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability 1967, 1, 281-297.
  • [22] Hartigan J.A., Wong M.A., Algorithm AS 136: A k-means clustering algorithm, Applied Statistics 1979, 100-108.
  • [23] Kanungo T., Mount D.M., Netanyahu N.S., Piatko C.D., Silverman R., Wu A.Y., An efficient k-means clustering algorithm: Analysis and implementation, Pattern Analysis and Machine Intelligence 2002, 24(7), 881-892.
  • [24] Wagstaff K., Cardie C., Rogers S., Schrödl S., Constrained k-means clustering with background knowledge, ICML 2001, 1, 577-584.
  • [25] Hare J.S., Samangooei S., Lewis P.H., Efficient clustering and quantisation of SIFT features: exploiting characteristics of the SIFT descriptor and interest region detectors under image inversion, Proceedings of the 1st ACM International Conference on Multimedia Retrieval, 2011, 2-18.
  • [26] Soltanshahi M.A., Montazer G.A., Giveki D., Content based image retrieval system using clustered scale invariant feature transforms, Optik - International Journal for Light and Electron Optics 2015, 126(18), 1695-1699.
  • [27] Górecki P., Sopyła K., Drozda P., Ranking by k-means voting algorithm for similar image retrieval, [In:] Artificial Intelligence and Soft Computing 2012, Springer, Berlin Heidelberg, 509-517.
  • [28] Velmurugan K., Baboo L.D.S.S., Content-based image retrieval using SURF and colour moments, Global Journal of Computer Science and Technology 2011, 11(10).
  • [29] Zagoris K., Chatzichristofis S.A., Arampatzis A., Bag-of-visual-words vs global image descriptors on two-stage multimodal retrieval, Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2011, 1251-1252.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b11a09e-c06b-45af-9f2e-59577c2aa4d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.