Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Geometrical structures, relative stabilities and electronic properties of neutral, cationic and anionic pure gold Auλn+1 and Ag-doped bimetallic AgAuλn(λ=0,±1;n=1−12) clusters have been systematically investigated by using density functional theory methodology. The optimized structures show that planar to three-dimensional structural transition occurs at n = 5 for cationic clusters. Due to strong relativistic effect of Au clusters, the ground state configurations of neutral and anionic bimetallic clusters favor planar geometry till n = 12. Silver atoms tend to occupy the most highly coordinated position and form the maximum number of bonds with Au atoms. The computed HOMO-LUMO energy gaps, fragmentation energies and second-order difference of energies show interesting odd-even oscillation behavior. The result indicates that AgAu5, AgAu+2−2 are the most stable clusters in this molecular system. The DFT based descriptors of bimetallic clusters are also discussed and compared with pure gold clusters. The high value of correlation coefficient between HOMO-LUMO energy gaps and DFT based descriptors supports our analysis. A good agreement between experimental and theoretical data has been obtained in this study.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
97--107
Opis fizyczny
Bibliogr. 77 poz., tab., rys.
Twórcy
autor
- Department of Mechatronics Engineering, Manipal University Jaipur, Dehmi-Kalan, Jaipur-303007, India
autor
- Department of Chemistry, Manipal University Jaipur, Dehmi-Kalan, Jaipur-303007, India
- Department of Chemistry, Presidency University, Bengaluru- 560064, India
autor
- Department of Mechatronics Engineering, Manipal University Jaipur, Dehmi-Kalan, Jaipur-303007, India
Bibliografia
- [1] ZHAO Y.R., KUANG X.Y., ZHENG B.B, LI Y.F., WAND S.J., J. Phys. Chem. A, 115 (2010), 569.
- [2] PAL R., WANG L.M., HUANG W., J. Am. Chem. Soc., 131 (2009), 3396.
- [3] EACHUS R.S., MARCHETTI A.P., MUENTER A.A., Annu. Rev. Phys. Chem., 50 (1999), 117.
- [4] ZHAO Y., LI Z.Y., YANG J.L., Phys. Chem. Chem. Phys., 11 (2009), 2329.
- [5] HOU S.M., ZHANG J.X., LI R., NING J., HAN R.S., SHEN Z.Y., ZHAO X.Y., XUE Z.Q., WU Q.D., Nanotechnology, 16 (2005), 239.
- [6] SCAFFARDI L.B, PELLEGRI N., SANCTIS D.O., TOCHO J.O., Nanotechnology, 16 (2005), 158.
- [7] FOURNIER R., J. Chem. Phys., 115 (2001), 2165.
- [8] YUAN D.W., WANG Y., ZENG Z., J. Chem. Phys., 122 (2005), 114310.
- [9] ZHAO S., REN Y.L., WANG J.J., YIN W.P., J. Phys. Chem. A, 114 (2010), 4917.
- [10] TORRES M.B., FERNANDEZ E.M., BALBAS L.C., J. Phys. Chem. A, 112 (2008), 6678.
- [11] HASHMI A.S.K., LOOS A., LITTMANN A., BRAUN I., KNIGHT J., DOHERTY S., ROMINGER F., Angew. Chem., 351 (2009), 576.
- [12] NEUMAIER M., WEIGEND F., HAMPER O., KAPPES M.M., J. Chem. Phys., 125 (2006), 104308.
- [13] AUTSCHBACH J., HESS B.A., JOHANSSON M.P., NEUGEBAUER J., PATZSCHKE M., PYYKKÖ P., REIHER M., SUNDHOLM D., Phys. Chem. Chem. Phys., 6 (2004), 11.
- [14] ACKERSON C.J., JADZINSKY P.D., JENSEN G.J., KORNBERG R.D., J. Am. Chem. Soc., 128 (2006), 2635.
- [15] SHAW C.F.III., Chem. Rev., 99 (1999), 2589.
- [16] VALDEN M., LAI X., GOODMAN D.W., Science, 281 (1998), 1647.
- [17] FÈLIX C., SIEBER C., HARBICH W., BUTTET J., RABIN I., SCHULZE W., ERTL G., Phys. Rev. Lett., 86 (2001), 2992.
- [18] KIM S.H., MEDEIROS-RIBEIRO G., OHLBERG D.A.A., WILLIAMS R.S., HEATH J.R., J. Phys. Chem. B, 103 (1999), 10341.
- [19] BRAVO-PÈREZ G., GARZÓN I.L., NOVARO O., Chem. Phys. Lett., 313 (1999), 655.
- [20] BOYEN H.G., KÄSTLE G., WEIGL F., KOSLOWSKI B., DIETRICH C., ZIEMANN P., SPATZ J.P., RIETHMÜLLER S., HARTMANN C., MÖLLER M., SCHMID G., GARNIER M.G., OELHAFEN P., Science, 297 (2002), 1533.
- [21] LI J., LI X., ZHAI H.J., WANG L.S., Science, 299 (2003), 864.
- [22] TIGGESBÄUMKER J., KÖLLER L., MEIWES-BROER K.H., LIESBSCH A., Phys. Rev. A, 48 (1993), 1749.
- [23] SIEBER C., BUTTET J., HARBICH W., FÈLIX C., MITRI´C R., BONAˇC I´C -KOUTECKÝ V., Phys. Rev. A, 70 (2004), 041201.
- [24] HO J., ERWIN K.M., LINEBERGER W.C., J. Chem. Phys., 93 (1990), 6987.
- [25] TAYLOR K.J., PETTIETTE-HALL C.L., CHESHNOVSKY O., SMALLEY R.E., J. Chem. Phys., 96 (1992), 3319.
- [26] OVIEDO I., PALMER R.E., J. Chem. Phys., 117 (2002), 9548.
- [27] XIAO L., TOLLBERG B., HU X., WANG L., J. Chem. Phys., 124 (2006), 114309.
- [28] DEKA A., DEKA R.C., J. Mol. Struct. (Theochem), 870 (2008), 83.
- [29] LECOULTRE S., RYDLO A., BUTTET J., FÈLIX C., GILB S., HARBICH W., J. Chem. Phys., 134 (2011), 184504-1.
- [30] ZHANG H., TIAN D., Comput. Mater. Sci., 42 (2008), 462.
- [31] PAL R., WANG L.M., HUANG W., WANG L.S., ZENG X.C., J. Chem. Phys., 134 (2011), 054306-1.
- [32] WANG H.Q., KUANG X.Y., LI H.F., Phys. Chem. Chem. Phys., 12 (2010), 5156.
- [33] OLSON R.M., GORDON M.S., J. Chem. Phys., 126 (2007), 214310.
- [34] PYYKKO P., Chem. Soc. Rev., 37 (2008), 1967.
- [35] ASSADOLLAHZADEH B., SCHWERDTFEGER P., J. Chem. Phys., 131 (2009), 064306.
- [36] FURCHE F., AHLRICHS R., WEIS P., JACOB C., GILB S., BIERWEILER T., KAPPES M.M., J. Chem. Phys., 117 (2002), 6982.
- [37] GILB S., WEIS P., FURCHE F., AHRICHS R., KAPPES M.M., J. Chem. Phys., 116 (2002), 4094.
- [38] TAFOUGHALT M.A., SAMAH M., Physica B, 407 (2012), 2014.
- [39] WANG L.M., PAL R., HUANG W., ZENG X.C., WANG L.S., J. Chem. Phys., 132 (2010), 114306-1.
- [40] LEE H.M., GE M., SAHU B.R., TARAKESHWAR P., KIM K.S., J. Phys. Chem., 107 (2003), 9994.
- [41] BONAČIĆ -KOUTECKÝ V., BURDA J., MLTRI R., GE M., ZAMPELLA G., FANTUCCI P., J. Chem. Phys., 117 (2002), 3120.
- [42] ANDRIOTIS A.N., MPOURMPAKIS G., BRODERICK S., RAJAN K., DATTA S., SUNKARA M., MENON M., J. Chem. Phys., 140 (2014), 094705-1.
- [43] BISHEA G.A., MORSE M.D., J. Chem. Phys., 95 (1991), 5646.
- [44] NEGISHI Y., NAKAMURA Y., NAKAJIMA A., J. Chem. Phys., 115 (2001), 3657.
- [45] WEIS P., WELZ O., VOLLMER E., KAPPES M.M., J. Chem. Phys., 120 (2003), 677.
- [46] SHAYEGHI A., HEARD C.J., JOHNSTON R.L., SCHÄFER R., J. Chem. Phys., 140 (2014), 054312-1.
- [47] TAFOUGHALT M.A., SAMAH M., Comput. Theor. Chem., 1033 (2014), 23.
- [48] KUANG X.J., WANG X.Q., LIU G.B., J. Alloys. Compd., 570 (2013), 46.
- [49] MUNIZ-MIRANDA F., MENZIANI M.C., PEDONE A., J. Phys. Chem. C, 119 (2015), 10766.
- [50] RANJAN P., DHAIL S., VENIGALLA S., KUMAR A., LEDWANI L., CHAKRABORTY T., Mat. Sci- Pol., 33 (2016), 719.
- [51] RANJAN P., VENIGALLA S., KUMAR A., CHAKRABORTY T., New. Front. Chem., 23 (2014), 111.
- [52] RANJAN P., VENIGALLA S., KUMAR A., CHAKRABORTY T., A theoretical analysis of bimetallic AgAun; (n=1-7) nano alloy clusters invoking DFT based descriptors, in: CHAKRABORTY T., LEDWANI L. (Eds.), Research Methodology in Chemical Sciences: Experimental and Theoretical Approaches, Apple Academic Press, USA, 2016, p. 337.
- [53] RANJAN P., KUMAR A., CHAKRABORTY T., Theoretical analysis: Electronic and optical properties of small Cu-Ag nano alloy clusters, in: CHAKRABORTY T., PANDEY A., RANJAN P. (Eds.), Computational Chemistry Methodology in Structural Biology and Material Sciences, Apple Academic Press, USA, 2018, p. 259.
- [54] RANJAN P., CHAKRABORTY T., KUMAR A., A theoretical study of bimetallic CuAun (n=1-7) nanoalloy clusters invoking conceptual DFT based descriptors, in: HAGHI A. K., POGLIANI L., CASTRO E. A., BALKOSE D., MUKBANIANI O. V., CHIA C. H. (Eds.), Applied Chemistry and Chemical Engineering, Vol. 4, Apple Academic Press, USA, ISBN-9781771885874, 2018 (In Press).
- [55] RANJAN P., KUMAR A., CHAKRABORTY T., AIP Conf. Proc., 1724 (2016), 020072-1-7.
- [56] RANJAN P., KUMAR A., CHAKRABORTY T., Material Today: Proceedings, 3 (2016), 1563.
- [57] RANJAN P., KUMAR A., CHAKRABORTY T., Physical Sciences Reviews, (2017), DOI: 10.1515/psr-2016-0112.
- [58] HAFNER J., WOLVERTON C., CEDER G., MRS Bulletin, 31 (2006), 659.
- [59] BECKE A. D., J. Chem. Phys., 98 (1993), 5648.
- [60] MIELICH B., SAVIN A., STOLL H., PREUSS H., Chem. Phys. Lett., 157 (1989), 200.
- [61] JIANG Z.Y., LEE K.H., LI S.T., CHU S.Y., Phys. Rev. B, 73 (2006), 235423.
- [62] Gaussian 03, Revision C02, FRISCH M.J., TRUCKS G.W., SCHLEGEL H.B., SCUSERIA G.E., ROBB M.A., CHEESEMAN J.R., et al. Gaussian, Inc.,Wallingford CT (2004).
- [63] PARR R.G., YANG W., Density functional theory of atoms and molecules, Oxford University Press, Oxford, 1989.
- [64] MAJUMDER C., KULSHRESHTHA S.K., Phys Rev B: Condens. Matter Mater. Phys., 73 (2006), 155427.
- [65] IDROBO J.C., WALKOSZ W., YIP S.F., OˇG UT S., WANG J.L., JELLINEK J., Phys. Rev. B: Condens. Matter Mater. Phys., 76 (2007), 205422.
- [66] XIAO L., WANG L.C., Chem. Phys. Lett., 392 (2004), 452.
- [67] WANG J., WANG G., ZHAO J., Phys. Rev. B: Condens. Matter. Mater. Phys., 66 (2002), 035418.
- [68] HÄKKINEN H., YOON B., LANDMAN U., LI X., ZHAI H.J., WANG L.S., J. Phys. Chem. A, 107 (2003), 6168.
- [69] SOULÈ D.B.B., FORD M.J., CORTIE M.B., J. Phys.: Condens. Matter., 18 (2006), 55.
- [70] ZHAO Y.R., ZHANG H.R., QIAN Y., DUAN X.C., HU Y.F., Mol. Phys., 114 (2015), 784.
- [71] ZHAO Y.R., QIAN Y., ZHANG M.G., HU Y.F., Mol. Phys., 113 (2015), 3598.
- [72] FABBI J.C., LANGENBERG J.D., COSTELLO Q.D., MORSE M.D., KARLSSON L., J. Chem. Phys., 115 (2001), 7543.
- [73] BAUSLICHER C. W. JR, LANGHOFF S.R., PARTRIDGE H., J. Chem. Phys., 91 (1989), 2399.
- [74] BEUTEL V., KRÄMER H.G., BHALE G.L., KUHN M., WEYERS K., DEMTRÖDER W., J. Chem. Phys., 98 (1993), 2699.
- [75] HUBER K.P., HERZBERG G., Constants of Diatomic Molecules, New York: Van Nostrand Reinhold, 1979.
- [76] LEON I., YANG Z., WANG L.S., J. Chem. Phys., 138 (2013), 184304.
- [77] WASENDRUP R., HUNT T., SCHWERDFEGER P., J. Chem. Phys., 112 (2000), 9356.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b049fcd-53bc-42b5-a650-c513b1e56cab