PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on friction behavior at the interface between prosthetic socket and liner

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The friction characteristics at the interface between prosthetic socket and liner have an important influence on the walking function and wearing comfort of amputees. The frictional behavior at the prosthetic socket/liner interface can provide theoretical guidance for the design and selection of prosthetic materials. So it is of great significance to study the friction behavior at prosthetic socket/liner interface. Methods: The surface roughnesses of the prosthetic socket and liner materials were measured by a laser confocal microscope. The frictional behavior at the prosthetic socket/liner interface was studied on a UMT TriboLab Tribometer by simulating the reciprocating sliding contact mode. An infrared camera was used to take thermal images and then calculated the temperature increase at the socket/liner interface. Results: The coefficient of friction of the silicon rubber fabric are significantly smaller than that of the foam liner materials. The frictional energy dissipation at the liner/acrylic socket interface is the smallest, while it is greater for 3D-printed socket materials. Meanwhile, the temperature increase has a positive correlation to the coefficient of friction and frictional energy dissipation. Conclusions: The three kinds of 3D-printed materials with high surface roughness have higher interface coefficient of friction and energy dissipation than acrylic material. The stiffness and energy consumption play an important role in the interface friction characteristics of the prosthetic liner materials. The appropriate coefficient of friction at the surface between prosthetic socket and liner is essential. A type of the reinforcement fiber has influence on the friction behavior of the 3D-printed reinforced nylon.
Rocznik
Strony
83--93
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Tribology Research Institution, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, People’s Republic of China
autor
  • Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Chengdu, People’s Republic of China
autor
  • Tribology Research Institution, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, People’s Republic of China
autor
  • China Disabled Assistive Devices Center, Beijing, People’s Republic of China
autor
  • Tribology Research Institution, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, People’s Republic of China
Bibliografia
  • [1] BAARS E.C.T., GEERTZEN J.H., Literature review of the possible advantages of silicon liner socket use in transtibial prostheses, Prosthetics and Orthotics International, 2005, 29 (1), 27–37.
  • [2] BOURELL D., MONTGOMERY J.T., VAUGHAN M.R., CRAWFORD R.H., Design of an actively actuated prosthetic socket, Rapid Prototyping Journal, 2010, 16 (3), 194–201.
  • [3] CAGLE J.C., REINHALL P.G., ALLYN K.J., MCLEAN J., HINRICHS P., HAFNER B.J., SANDERS J.E., A finite element model to assess transtibial prosthetic sockets with elastomeric liners, Medical and Biological Engineering and Computing, 2018, 56, 1227–1240.
  • [4] CAVACO A., DURÃES L., PAIS S., RAMALHO A., Friction of prosthetic interfaces used by transtibial amputees, Biotribology, 2016, 6, 36–41.
  • [5] EMRICH R., SLATER K., Comparative analysis of below-knee prosthetic socket liner materials, Journal of Medical Engineering and Technology, 1998, 22 (2), 94–98.
  • [6] FENG Q.P., LI W., LIU X.D., JI W., ZHOU Z.R., Investigation of reciprocating friction characteristics between different bionic surfaces of prosthesis materials and skin, Biosurface and Biotribology, 2019, 5 (2), 57–66.
  • [7] FLORENCE M.M., ANDREW J.C., JOSHUA W.S., DICKINSON A.S., Predictive control for an active prosthetic socket informed by FEA-based tissue damage risk estimation, 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019.
  • [8] JIA X.H., ZHANG M., LI X.B., LEE W.C.C., A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees, Clinical Biomechanics, 2005, 20, 630–635.
  • [9] KEJLAA G.H., Consumer concerns and the functional value of prostheses to upper limb amputees, Prosthetics and Orthotics International, 2009, 17 (3), 157–163.
  • [10] KONG M., LI W., LI H.L., LIU X.D., ZHOU Z.R., The skin frictional properties of 4 kinds of commonly used prosthetic materials, Journal of Biomedical Engineering, 2008, 25 (5), 1107–1111, 1125.
  • [11] LEE W.C.C., ZHANG M., JIA X.H., CHEUNGA J.T.M., Finite element modeling of the contact interface between transtibial residual limb and prosthetic socket, Medical Engineering and Physics, 2004, 26 (8), 655–662.
  • [12] LI W., KONG M., LIU X.D., ZHOU Z.R., Tribological behavior of scar skin and prosthetic skin in vivo, Tribology International, 2008, 41 (7), 640–647.
  • [13] LI W., LIU X.D., CAI Z.B., ZHENG J., ZHOU Z.R., Effect of prosthetic socks on the frictional properties of residual limb skin, Wear, 2011, 271 (11–12), 2804–2811.
  • [14] LI W., QU S.X., ZHOU Z.R., Reciprocating sliding behaviour of human skinin vivoat lower number of cycles, Tribology Letters, 2006, 23 (2), 165–170.
  • [15] LI W., SHI L., DENG H.Y., ZHOU Z.R., Investigation on friction trauma of small intestine in vivo under reciprocal sliding conditions, Tribology Letters, 2014, 55 (2), 261–270.
  • [16] LIN C.C., CHANG C.H., WU C.L., CHUNG K.C., LIAO I.C., Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model, 2004, 26 (1), 1–9.
  • [17] MILLSTEIN S.G., HEGER H., HUNTER G.A., Prosthetic use in adult upper limb amputees: A comparison of the body powered and electrically powered prostheses, Prosthetics and Orthotics International, 2009, 10 (1), 27–34.
  • [18] OMASTA M., DAVID P., NÁVRAT T., ROSICKÝ J., Finite element analysis for the evaluation of the structural behaviour, of a prosthesis for trans-tibial amputees, Medical Engineering and Physics, 2012, 34 (1), 38–45.
  • [19] POHJOLAINEN T., ALARANTA H., KÄRKKÄINEN M., Prosthetic use and functional and social outcome following major lower limb amputation, Prosthetics and Orthotics International, 1990, 14 (2), 75–79.
  • [20] WANG A., LIN R., STARK C., DUMBLETON J.H., Suitability and limitations of carbon fiber reinforced PEEK composites as bearing surfaces for total joint replacements, Wear, 1999, 225–229 (4), 724–727.
  • [21] ZHANG M., LORD M., TURNER-SMITH A.R., ROBERTS V.C., Development of a non-linear finite element modelling of the below-knee prosthetic socket interface, Medical Engineering & Physics, 1995, 17 (8), 559–566.
  • [22] ZHANG M., ROBERTS C., Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket, Medical Engineering and Physics, 2000, 22 (9), 607–612.
  • [23] ZHANG M., TURNER-SMITH A.R., ROBERTS V.C., TANNER A., Frictional action at lower limb/prosthetic socket interface, Medical Engineering & Physics, 1996, 18 (3), 207–214.
  • [24] ZHAO G., HUSSAINOVA I., ANTONOV M., WANG Q.H., WANG T.M., Friction and wear of fiber reinforced polyimide composites, Wear, 2013, 301 (1–2), 122–129.
  • [25] ZHENG S.X., ZHAO W., LU B., Three dimensional finite dynamic analysis of the residual limb and prosthetic socket, Journal of Xi’an Jiaotong University, 2006, 40 (7), 807.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b035130-e0be-4fbc-9508-15a7a1745c46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.