Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A mathematical model for a two-phase fluidised bed bioreactor with liquid d recirculation and an external aerator was proposed. A stationary nonlin ear analysis of such a bioreactor for an aerobic process with double-substrate kinetics was carried out. The influences of a volumetric fraction of solid carriers in the liquid phase, the rate of active e biomass transfer from the biofilm to the liquid, the concentration of carbonaceous substrate, the mean residence time of the liquid and the efficiency of the external aerator on the steady state characteristics of the bioreactor were described. A method for determination of the minimal recirculation ratio related to oxygen demand and fluidised bed conditions was presented. On the basis of the obtained results, it is possible to choose reasonable operating conditions of such plants and to determine constraints, while considering acceptable concentrations of a toxic substrate being degraded.
Czasopismo
Rocznik
Tom
Strony
435--448
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Cracow University of Technology, Department of Chemical and Process Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
autor
- Cracow University of Technology, Department of Chemical and Process Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
- 1. Beyenal H., Seker S., Tanyolac A., Salih B., 1997. Diffusion coefficients of phenol and oxygen in a biofilm of pseudomonas putida. AIChE J., 43, 243-250. DOI: 10.1002/aic.690430126. Choi J.W., Min J., Lee
- 2. W.H., Lee, 1999. Mathematical model for a three-phase fluidized bed biofilm reactor in wastewater treatment. Biotechnol. Bioprocess Eng., 4, 51-58. DOI: 10.1007/BF02931914.
- 3. Dunn I.J., Tanaka H., Uzman S., 1983. Biofilm fluidized-bed reactors and their application to waste water nitrification. Annals New York Academy Sci., 413, 168-183. DOI: 10.1111/j.1749-6632.1983.tb47887.x.
- 4. Dziubiński M., Prywer J., 2009. Mechanika płynów dwufazowych, WNT, Warszawa.
- 5. Hsieng T.Y., Lin Y.H., 2005. Biodegradation of phenolic wastewater in a fixed biofilm reactor. Biochem. Eng. J., 27, 95-103. DOI: 10.1016/j.bej.2005.08.023.
- 6. Lakshmi L.P., Setty Y.P., 2008. Liquid-solid mass transfer in a two-phase fluidized bed bioreactor. Chem. Eng. J., 135, 135-140. DOI: 10.1016/j.cej.2007.04.020.
- 7. Nicolella C., Van Loosdrecht M.C.M., Heijnen J.J., 2000. Wastewater treatment with particulate biofilm reactors. J. Biotechnol., 80, 1-33. DOI: 10.1016/S0168-1656(00)00229-7.
- 8. Olivieri G., Marzocchella A., Salatino P., 2010. A novel three-phase airlift reactor without circulation of solids. Can. J. Chem. Eng., 88, 574-578. DOI: 10.1002/cjce.20314.
- 9. Olivieri G., Russo M.E., Marzocchella A., Salatino P., 2011. Modeling of an aerobic biofilm reactor with double-limiting substrate kinetics: Bifurcation and dynamical analysis. Biotechnol. Prog., 27, 1599-1613. DOI: 10.1002/btpr.690.
- 10. Onysko K.A., Robinson C.W., Budman H.M., 2002. Improved modelling of the unsteady-state behavior of an immobilized-cell, fluidized-bed bioreactor for phenol biodegradation. Can. J. Chem. Eng., 80, 239-252. DOI: 10.1002/cjce.5450800209.
- 11. Park Y., Davis M.E., Wallis D.A., 1984. Analysis of a continuous, aerobic fixed-film bioreactor. Biotechnol. Bioeng., 26, 468-476. DOI: 10.1002/bit.260260510.
- 12. Rodgers M., Zhan X.-M., 2003. Moving-medium biofilm reactors. Rev. Environ. Sci. Biotechnol., 2, 213-224. DOI: 10.1023/B:RESB.0000040467.78748.1e.
- 13. Russo M.E., Maffettone P.L., Marzocchella A., Salatino P., 2008. Bifurcation and dynamical analysis of a continuous biofilm reactor. J. Biotechnol., 135, 296-303. DOI: 10.1016/j.jbiotec.2008.04.003.
- 14. Schügerl K., 1997. Three-phase-biofluidization. Application of three-phase fluidization in the biotechnology – A review. Chem. Eng. Sci., 52, 3661-3668. DOI: 10.1016/S0009-2509(97)88926-9.
- 15. Seker S., Beyenal H., Salih B., Tanyolac A., 1997. Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Appl. Microbiol. Biotechnol., 47, 610-614. DOI: 10.1007/s002530050982.
- 16. Sevillano X., Isasi J. R., Penas F. J., 2008. Feasibility study of degradation of phenol in fluidized bed bioreactor with a cyclodextrin polymer as biofilm carrier. Biodegrad., 19, 589-597. DOI: 10.1007/s10532-007-9164-0.
- 17. Tang W.T., Fan L.S., 1987a. Steady state phenol degradation in a draft-tube, gas-liquid-solid fluidized-bed bioreactor. AIChE J., 33, 239-249. DOI: 10.1002/aic.690330210.
- 18. Tang W.T., Wisecarver K., Fan L.S., 1987b. Dynamics of a draft tube gas-liquid-solid fluidized bed bioreactor for phenol degradation. Chem. Eng. Sci., 42, 2123-2134. DOI: 10.1016/0009-2509(87)85033-9.
- 19. Wisecarver K.D., Fan L.S., 1989. Biological phenol degradation in a gas-liquid-solid fluidized bed reactor. Biotechnol. Bioeng., 33, 1028-1038. DOI: 10.1002/bit.260330812.
- 20. Worden R.M., Donaldson T.L., 1987. Dynamics of a biological fixed film for phenol degradation in a fluidized bed bioreactor. Biotechnol. Bioeng., 30, 398-412. DOI: 10.1002/bit.260300311.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8af7ee00-2152-4cf7-8241-2a3c1e04ef64