Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Bioaugmentation Strategy of Activated Sludge on the Co-Treatment of Reject Water and Municipal Wastewater at a Decreasing Temperature

Treść / Zawartość
Warianty tytułu
Języki publikacji
In the present study, the influence of bioaugmentation strategy on the co-treatment of 13% v/v reject water and municipal wastewater at a decreasing temperature was evaluated. The experiment was performed in two identical laboratory sequencing batch reactors with the active volume of 8 L. Each one was operated using a 12-hour cycle at sludge retention time of 3 d. The SBR A was bioaugmented with a mixture of wild-living bacteria and Archaea in a dose 0.25 ml. In turn, the comparative reactor (SBR B) was non-bioaugmented, the Archaea product was replaced with an equal volume of dechlorinated tap water. The experiment was divided into 3 phases, each with a different temperature range (20, 15 and 10°C). The temperature reduction did not adversely affect the process performance in the bioaugmented and non-bioaugmented system. Significant removal efficiencies were achieved in both SBRs. The major differences were observed for the COD content in the bioaugmented SBR at a temperature of 10°C. In this case, statistically lower concentrations in the effluent were observed in the bioaugmented system than in the non-bioaugmented one. Additionally, at a temperature of 10°C, an improved process performance was observed in the Archaea presence, but the differences were of no statistical significance.
Słowa kluczowe
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Fundamentals of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
  • 1. Babko R., Kuzmina T., Pliashechnik V., Łagód G. and Fyda, J. 2016. Anaerobic ciliates in activated sludge communities. Rocznik Ochrona Srodowiska, 18(2), 733–745.
  • 2. Bathe S., Schwarzenbeck N. and Hausner M. 2019. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid. Bioresource Technology, 100, 2902–2909.
  • 3. Benedetti B., Majone M., Cavaliere C., Montone C.M., Fatone F., Frison N., Laganà A, and Capriotti A.L. 2020. Determination of multi-class emerging contaminants in sludge and recovery materials from waste water treatment plants: Development of a modified QuEChERS method coupled to LC–MS/ MS. Microchemical Journal, 155, 104732.
  • 4. Berends D.H.J.G., Salem S., van der Roest H.F. and van Loosdrecht M.C.M. 2005. Boosting nitrification with the BABE technology. Water Sci. Technol. 52, 63–70.
  • 5. Boonnorat J., Techkarnjanaruk S., Honda R., Angthong S., Boonapatcharoen N., Muenmee S. and Prachanurak P. 2018. Use of aged sludge bioaugmentation in two-stage activated sludge system to enhance the biodegradation of toxic organic compounds in high strength wastewater. Chemosphere; 202, 208–217.
  • 6. Cui D., Li A., Qiu T., Cai R., Pang Ch., Wang J., Yang J., Ma F. and Ren N. 2014. Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature. Front. Environ. Sci. Eng. 8, 937–944.
  • 7. Czarnota J., Masłoń A., Zdeb M. and Łagód G. 2020. The impact of different powdered mineral materials on selected properties of aerobic granular sludge. Molecules, 25(2), 386.
  • 8. Deblonde T., Cossu-Leguille C. and Hartemann P. 2011. Emerging pollutants in wastewater: a review of the literature. International Journal of Hygiene and Environmental Health, 214 (6), 442–448.
  • 9. Drewnowski J., Mąkinia J., Szaja A., Łagód G., KopećŁ. and Aguilar J.A. 2019. Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP. Water, 11, 485.
  • 10. Drewnowski J., Remiszewska-Skwarek A., Duda, S. and Łagód, G. 2019. Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization. Processes, 7, 311.
  • 11. Dudziak M. and Burdzik-Niemiec E. 2017. Ultrafiltration in the treatment of 17 β-estradiol and bisphenol Acontaining wastewaters through modified membranes. Przemysl Chemiczny, 96(2), 448–452.
  • 12. Figdore B.A., Stensel D.H. and Winkler M.K.H. 2018. Bioaugmentation of sidestream nitrifyingdenitrifying phosphorus accumulating granules in a low-SRT activated sludge system at low temperature. Water Research, 135, 241–250.
  • 13. Fyda J., Babko R., Fiałkowska R., Pajdak-Stós A., Kocerba-Soroka W., Sobczyk M and Sobczyk Ł. 2015. Effect of high levels of the rotifer Lecane inermis on the ciliate community in laboratory-scale sequencing batch bioreactors (SBRs). European Journal of Protistology, 51(5), 470–479.
  • 14. Gernaey K. and Sin G. 2008. Wastewater Treatment Models. In Jørgensen SE, Fath BD, editors, Encyclopedia of Ecology. Vol. 5: Ecological Models. Oxford Elsevier, 3705–3718.
  • 15. Grabas M., Tomaszek J., Czerwieniec E., Masłoń A. and Łuczyszyn J. 2016. Application of a biopreparation with cultures of effective microorganisms to the processing of wastewater sludge on a semi-industrial scale. Environment Protection Engineering, 42 (1), 33–44.
  • 16. Guo J., Wang J., Cui D., Wang L., Ma F., Chang C.C. and Yang J. 2010. Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures. Bioresource Technology, 101 (17), 6622–6629.
  • 17. Guo X., Li Y., Zhong H., Li P., Zhao T. and Zhang C. 2019. A wastewater treatment system combining Myriophyllumaquaticum and activated sludge: Optimization of construction conditions and evaluation of wastewater treatment performance. Journal of Environmental Management, 235, 105–111.
  • 18. Guz Ł., Łagód G., Jaromin-Gleń K., Suchorab Z., Sobczuk H. and Bieganowski A. 2015. Application of gas sensor arrays in assessment of wastewater purification effects. Sensors,15, 1–21.
  • 19. Hauck M., Maalcke-Luesken F. A, Jetten M. S.M. and Huijbregts M. A.J. 2016. Removing nitrogen from wastewater with side stream anammox: What are the trade-offs between environmental impacts?. Resources, conservation, and recycling, 107, 212–219.
  • 20. Head M.A. and Oleszkiewicz J.A. 2004. Bioaugmentation for nitrification at cold temperatures. Water Research, 38 (3), 523–530.
  • 21. Herrero M. and Stuckey D. 2014. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, 119–128.
  • 22. Hu D., Zhen Z., Niu T., Wei Dou W., Weixiao & Jiang L.M. and Lv Y. 2017. Co-treatment of reject water from sludge dewatering and supernatant from sludge lime stabilization process for nutrient removal: A cost-effective approach. Separation and Purification Technology, 172, 357–365.
  • 23. Katsou E., Alvarino T., Malamis S., Suarez S., Frison N., Omil F. and Fatone, F. 2016. Effects of selected pharmaceuticals on nitrogen and phosphorus removal bioprocesses. Chemical Engineering Journal, 295, 509–517.
  • 24. Kudlek E. and Dudziak M. 2018. The assessment of changes in the membrane surface during the filtration of wastewater treatment plant effluent. Desalination and Water Treatment, 128, 298–305.
  • 25. Lebiocka M., Montusiewicz A. and Cydzik-Kwiatkowska A. 2018. Effect of bioaugmentation on biogas yields and kinetics in anaerobic digestion of sewage sludge. Int. J. Environ. Res. Public Health, 15(8), 1717.
  • 26. Łagód G., Guz Ł., Sabba F. and Sobczuk H. 2018. Detection of wastewater treatment process disturbances in bioreactors using the e-nose technology. Ecological Chemistry and Engineering S, 25(3), 405–418.
  • 27. Ma F., Guo J., Zhao L.J., Chang C.C., Cui D. 2009. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresource Technology, 100 (2), 597–602.
  • 28. Marttinen S.K., Ruissalo M. and Rintala J.A. 2004. Removal of bis (2-ethylhexyl) phthalate from reject water in a nitrogen-removing sequencing batch reactor. Journal of Environmental Management, 73 (2), 103–109.
  • 29. Masłoń A. 2017. Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant. E3S Web of Conferences, 22, 00115.
  • 30. Park D., Lee D.S., Kim Y.M. and Park J.M. 2008. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresource Technology, 99, 2092–2096.
  • 31. Perez R., Gali A., Dosta J. and Mata-Alvarez J. 2007. Biological nitrogen removal singsulfides for autotrophic denitrification in a sequencing batch reactor to treat reject water. Ind. Eng. Chem. Res. 46, 6646–6649.
  • 32. Piechna P. and Zubrowska-Sudoł M. 2017. Respirometric Activity of Activated Sludge and Biofilm in IFAS-MBBR System. J. Ecol. Eng. 2017, 18, 145–151.
  • 33. Podstawczyk D., Witek-Krowiak A., DawiecLiśniewska A., Chrobot P. and Skrzypczak D. 2017. Removal of ammonium and orthophosphates from reject water generated during dewatering of digested sewage sludge in municipal wastewater treatment plant using adsorption and membrane contactor system. Journal of Cleaner Production, 161, 277–287.
  • 34. Polus M. and Anielak A.M. 2017. The use of Archaea in the bioaugmentation of activated sludge as a method for the biological removal of nitrogen compounds. Technical Transactions, 5(114), 83–95.
  • 35. Ren W., Zhou Z., Jiang L., Hu D., Qiu Z.H., Wei H. and Wang, L. 2015. A cost-effective method for the treatment of reject water from sludge dewatering process using supernatant from sludge lime stabilization. Separation and Purification Technology, 142, 123–128.
  • 36. Roots P., Sabba F., Rosenthal A.F., Wang Y., Yuan O., Rieger L., Yang F., Kozak J.A., Zhang H. and Wells G.F. 2020. Integrated shortcut nitrogen and biological phosphorus removal from mainstream wastewater: Process operation and modeling. Environ. Sci., 6, 566–580.
  • 37. Semrany, Favier S., Djelal L., Taha H., Taha S. and Favier L. 2012. Bioaugmentation: Possible solution in the treatment of Bio-Refractory Organic Compounds (Bio-ROCs). Biochemical Engineering Journal, 69,75–86.
  • 38. Shahzad M., Khan S.J. and Paul P. 2015. Influence of Temperature on the Performance of a Full-Scale Activated Sludge Process Operated at Varying Solids Retention Times Whilst Treating Municipal Sewage. Water, 7, 855–867.
  • 39. Szaja A., Łagód G., Jaromin-Glen K. and Montusiewicz A. 2018. The Effect of bioaugmentation with Archaea on the oxygen uptake rate in a sequencing batch reactor. Water, 10, 575.
  • 40. Szeląg B., Barbusiński K. and Studziński J. 2018. Activated sludge process modelling using selected machine learning techniques. Desalination and Water Treatment, 117, 78–87.
  • 41. Tan W., Huang C., Chen Ch., Liang B. and Aijie W. 2016. Bioaugmentation of activated sludge with elemental sulfur producing strain Thiopseudomonas denitrificans X2 against nitrate shock load. Bioresource Technology, 220, 647–650.
  • 42. Van Limbergen H., Top E. and Verstraete, W. 1988. Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol, 50, 16–23.
  • 43. Wang M., Yang G., Min H., Lv Z. and Jia, X. 2009. Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: degradation study and analysis of its mechanisms. Water Reserch, 43, 4187–4196.
  • 44. Zhang T., Jin T., Yan Q., Shao M., Wells G., Criddle C. and Fang H.H. 2009. Occurrence of ammoniaoxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. Jounal of Applied Microbiology, 107(3), 970–977.
  • 45. Zheng Y., Chai L.Y., Yang Z.H., Tang C.J., Chen Y.H. and Shi Y. 2013. Enhanced remediation of black liquor by activated sludge bioaugmented with a novel exogenous microorganism culture. Applied Microbiology and Biotechnology, 97, 6525–6535.
  • 46. Zhou Y., Meng J., Zhang M., Chen S., He B., Zhao H., Li Q., Zhang S. and Wang T. 2019. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants? Environment International, 131, 104982.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.