PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Construction and application of a bearing fault diagnosis model based on improved GWO algorithm

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In mechanical equipment, if bearing components fail, it can cause serious equipment damage and even threaten human life safety. Therefore, equipment bearings fault diagnosis is of great meaning. In the study of bearing fault diagnosis, an improved gray wolf optimization algorithm is put forward to optimize the support vector machine model. The model improves the convergence factor of the algorithm, and then optimizes the penalty factor and KF parameters of the support vector machine to enhance the accuracy of fault classification. At the same time, in the problem of fault identification, the introduction of adaptive noise set empirical mode decomposition and the combination of permutation entropy are studied to minimize the impact of noise on the identification model. The experimental outcomes indicated that the algorithm proposed in the study had an average fitness value and a standard deviation fitness value of 0 in the benchmark test function and 94.55% accuracy in overall fault identification. The permutation entropy of the vibration signal in the normal state of the bearing was within the range of [0.13, 0.52], which has a more stable state compared to the fault state. The results show that the improved grey Wolf optimization algorithm is applied to the optimization of support vector machine, combined with the adaptive noise set empirical mode decomposition and permutation entropy, and the identification and classification results of bearing faults are successfully improved, making the proposed method feasible in bearing fault diagnosis, and providing a more effective scheme for fault diagnosis.
Czasopismo
Rocznik
Strony
art. no. 2024302
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • School of Mechanical and Electronic Engineering, Shandong Vocational College of Industry, Zibo 256414, China
Bibliografia
  • 1. Zhang X, Zhao B, Lin Y. machine learning based bearing fault diagnosis using the case western reserve university data: A review. IEEE Access 2021; 9: 155598-608. https://doi.org/10.1109/ACCESS.2021.3128669.
  • 2. Chen X, Zhang B, Gao D. Bearing fault diagnosis base on multi-scale CNN and LSTM model. Journal of Intelligent Manufacturing 2021; 32(4): 971-87. https://doi.org/10.1007/s10845-020-01600-2.
  • 3. Xiao Y, Shao H, Han S, Huo Z, Wan J. Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain. IEEE/ASME Transactions on Mechatronics 2022; 27(6): 5254-63. https://doi.org/10.1109/TMECH.2022.3177174.
  • 4. Li C, Li S, Zhang A, He Q, Liao Z, Hu J. Meta-learning for few-shot bearing fault diagnosis under complex working conditions. Neurocomputing 2021; 439: 197-211. https://doi.org/10.1016/j.neucom.2021.01.099.
  • 5. Diab AAZ, Abdul‐Ghaffar HI, Ahmed AA, Ramadan HA. An effective model parameter estimation of PEMFCs using GWO algorithm and its variants. IET Renewable Power Generation 2022; 16(7): 1380-400. https://doi.org/10.1049/rpg2.12359.
  • 6. Yang J, Zhao H, Chen S. Illumination correction model with sine‐cosine algorithm to optimize gray wolf population for least‐squares support vector regression. Color Research & Application 2022; 47(1): 92-106. https://doi.org/10.1002/col.22716.
  • 7. Mohammed HM, Abdul ZKh, Rashid TA, Alsadoon A, Bacanin N. A new K-means grey wolf algorithm for engineering problems. World Journal of Engineering 2021; 18(4): 630-8. https://doi.org/10.1108/WJE-10-2020-0527.
  • 8. Djema MA, Boudour M, Agbossou K, Cardenas A, Doumbia ML. GWO-based direct power control with improved LCL filter design for three-phase inverters. International Journal of Digital Signals and Smart Systems 2021; 5(1): 3. https://doi.org/10.1504/IJDSSS.2021.112791.
  • 9. Chen Y, Zhang D, Zhang H, Wang QG. Dual-Path Mixed-Domain Residual threshold networks for bearing fault diagnosis. IEEE Transactions on Industrial Electronics 2022; 69(12): 13462-72. https://doi.org/10.1109/TIE.2022.3144572.
  • 10. Gao S, Xu L, Zhang Y, Pei Z. Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN. ISA Transactions 2022; 128: 485-502. https://doi.org/10.1016/j.isatra.2021.11.024.
  • 11. Tao H, Qiu J, Chen Y, Stojanovic V, Cheng L. Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion. Journal of the Franklin Institute 2023; 360(2): 1454-77. https://doi.org/10.1016/j.jfranklin.2022.11.004.
  • 12. Cui B, Weng Y, Zhang N. A feature extraction and machine learning framework for bearing fault diagnosis. Renewable Energy 2022; 191: 987-97. https://doi.org/10.1016/j.renene.2022.04.061.
  • 13. Ding J, Wang Z, Yao L, Cai Y. Rolling bearing fault diagnosis based on GCMWPE and parameter optimization SVM. Zhongguo Jixie Gongcheng/China Mechanical Engineering 2021; 32: 147-55. https://doi.org/10.3969/j.issn.1004-132X.2021.02.004.
  • 14. Rizal A, Priharti W, Rahmawati D, Mukhtar H. Classification of pulmonary crackle and normal lung sound using spectrogram and support vector machine. Journal of Biomimetics, Biomaterials and Biomedical Engineering 2022;55:143-53. https://doi.org/10.4028/p-tf63b7.
  • 15. Ünver M, Olgun M, Department of Mathematics, Ankara University, Türkiye, Türkarslan E, Department of Mathematics, TED University, Türkiye. Cosine and Cotangent Similarity Measures Based on Choquet Integral for Spherical Fuzzy Sets and Applications to Pattern Recognition. Journal of Computational and Cognitive Engineering 2022; 1(1): 21-31. https://doi.org/10.47852/bonviewJCCE2022010105.
  • 16. Maji A, Mukherjee I. An unsupervised one-classclassifier support vector machine to simultaneously monitor location and scale of multivariate quality characteristics. International Journal of Quality & Reliability Management 2023; 40(2): 419-54. https://doi.org/10.1108/IJQRM-09-2021-0316.
  • 17. Xie Q, Guo Z, Liu D, Chen Z, Shen Z, Wang X. Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm. Renewable Energy. 2021;176:447-58. https://doi.org/10.1016/j.renene.2021.05.058.
  • 18. Sharma S, Kapoor A. An efficient routing algorithm for iot using gwo approach: International Journal of Applied Metaheuristic Computing 2021; 12(2): 67-84. https://doi.org/10.4018/IJAMC.2021040105.
  • 19. Gul F, Rahiman W, Alhady SSN, Ali A, Mir I, Jalil A. Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO-GWO optimization algorithm with evolutionary programming. Journal of Ambient Intelligence and Humanized Computing 2021; 12(7): 7873-90. https://doi.org/10.1007/s12652-020-02514-w.
  • 20. Indramaya E, Suyanto S. Comparative study of recent swarm algorithms for continuous optimization. Procedia Computer Science 2021; 179: 685-95. https://doi.org/10.1016/j.procs.2021.01.056.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8aeebb85-8ae8-408d-9879-bf251fee45b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.