PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of enhancement of thermal performance of flat plate solar collectors through nanofluid implementation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd doskonalenia wydajności cieplnej płaskich kolektorów słonecznych poprzez zastosowanie nanocieczy
Języki publikacji
EN
Abstrakty
EN
Nanofluids have found widespread practical applications in heat transfer, including cooling oils for diverse uses like automobile radiators, solar and nuclear power systems, biomedical devices, ventilation, heating, air conditioning, refrigeration, engine cooling, and transformers. Extensive scientific studies have investigated the impact of exotic fluids when combined with traditional heat transfer fluids, revealing that this combination enhances heat transfer performance beyond that of conventional working fluids. Collectively, these studies demonstrate the impressive heat transfer abilities of nanofluids. To optimize the efficiency of flat plate solar collectors, a comprehensive approach integrating theory and experimentation is essential. The results of such research highlight that increasing both the mass flow rate and concentration of nanofluids can lead to significant efficiency improvements, with potential enhancements ranging from 20% to 85%.
PL
Nanociecze znalazły szerokie praktyczne zastosowanie w wymianie ciepła. Oleje chłodzące w tym oleje stosowane są w różnych zastosowaniach, takich jak chłodnice samochodowe, systemy energii słonecznej i jądrowej, urządzenia biomedyczne, wentylacja, ogrzewanie, klimatyzacja, chłodnictwo, chłodzenie silników i transformatorów. Celem szeroko zakrojonych badań naukowych było zbadanie wpływu egzotycznych cieczy w połączeniu z tradycyjnymi cieczami przenoszącymi ciepło, ujawniając, że ta kombinacja poprawia wydajność wymiany ciepła w porównaniu z konwencjonalnymi cieczami roboczymi. Badania wykazały imponujące zdolności przenoszenia ciepła przez nanociecze. Optymalizacja wydajności płaskich kolektorów słonecznych polega na kompleksowym podejściu łączącym metody teoretyczne oraz badania eksperymentalne. Wyniki takich badań podkreślają, że zwiększenie zarówno masowego natężenia przepływu, jak i stężenia nanocieczy może prowadzić do potencjalnej poprawy wydajności w zakresie od 20% do 85%. Celem tego artykułu jest zaprezentowanie osiągnięć naukowych w zakresie implementacji nanocieczy do zwiększenia efektywności cieplnej płaskich kolektorów słonecznych.
Rocznik
Strony
139--148
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Northern Technical University/Technical College of Engineering
  • Northern Technical University/Technical College of Engineering
Bibliografia
  • 1. Alawi, O.A., Kamar, H.M., Mallah, A.R., Mohammed, H.A., Sabrudin, M.A.S., Newaz, K.M.S., Najafi, G., & Yaseen, Z.M. (2021). Experimental and theoretical analysis of energy efficiency in a flat plate solar collector using monolayer graphene nanofluids. Sustainability, 13, 5416. https://doi.org/10.3390/su13105416
  • 2. Ali, H. H. M., Hussein, A. M., Allami, K. M. H., & Mohamad, B. (2023). Evaluation of shell and tube heat exchanger performance by using ZnO/water nanofluids. Journal of Harbin Institute of Technology (New Series), 30, 1–13 https://doi.org/10.11916/j.issn.1005-9113.2023001
  • 3. Alim, M. A., Abdin, Z., Saidur, R., Hepbasli, A., Khairul, M. A., & Rahim, N. A. (2013). Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy and Buildings, 66, 289–296. https://doi.org/10.1016/j.enbuild.2013.07.027
  • 4. Alklaibi, A. M., Sundar, L. S., & Sousa, A. C. M. (2021). Experimental analysis of exergy efficiency and entropy generation of diamond/water nanofluids flow in a thermosyphon flat plate solar collector. International Communications in Heat Mass Transfer, 120, 105057. https://doi.org/10.1016/j.icheatmasstransfer.2020.105057
  • 5. Berkache, A., Amroune, S., Golbaf, A., & Mohamad, B. (2022). Experimental and numerical investigations of a turbulent boundary layer under variable temperature gradients. Journal of the Serbian Society for Computational Mechanics, 16(1), 1–15. https://doi.org/10.24874/jsscm.2022.16.01.01
  • 6. Chaji, H., Ajabshirchi, Y., Esmaeilzadeh, E., Heris, S. Z., Hedayatizadeh, M., & Kahani, M. (2013). Experimental study on thermal efficiency of flat plate solar collector using TiO2/water nanofluid. Modern Applied Science, 7(10), 60–69. https://doi.org/10.5539/mas.v7n10p60
  • 7. Choudhary, S., Sachdeva, A., & Kumar, P. (2020). Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector. Renewable Energy, 147, 1801–1814, https://doi.org/10.1016/j.renene.2019.09.126
  • 8. Dutta, S., Biswas, A. (2019). A numerical investigation of natural convection heat transfer of copper-water nanofluids in a rectotrapezoidal enclosure heated uniformly from the bottom wall. Mathematical Modelling of Engineering Problems, 6, 105–114. https://doi.org/10.18280/mmep.06011
  • 9. Dutta, S., Goswami, N., Biswas, A. K., & Pati, S. (2019). Numerical investigation of magnetohydrodynamic natural convection heat transfer and entropy generation in a rhombic enclosure filled with Cu-water nanofluid. International Journal of Heat and Mass Transfer, 136, 777–798. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.024
  • 10. Dutta, S., Pati, S., & Baranyi, L. (2021). Numerical analysis of magnetohydrodynamic natural convection in a nanofluid filled quadrantal enclosure. Case Studies in Thermal Engineering, 28, 101507. https://doi.org/10.1016/j.csite.2021.101507
  • 11. Farajzadeh, E., Movahed, S., & Hosseini, R. (2018). Experimental and numerical investigations on the effect of Al2O3/TiO2–H2O nanofluids on thermal efficiency of the flat plate solar collector. Renewable Energy, 118, 122–130. https://doi.org/10.1016/j.renene.2017.10.102
  • 12. Farhana, K., Kadirgama, K., Noor, M. M., Rahman, M. M., Ramasamy, D., & Mahamude, A. S. F. (2019). CFD modelling of different properties of nanofluids in header and riser tube of flat plate solar collector. IOP Conference Series: Materials Science and Engineering, 469(1), 012041. https://doi.org/10.1088/1757-899X/469/1/012041
  • 13. Hawwash, A. A., Abdel Rahman, A. K., Nada, S. A., & Ookawara, S. (2018). Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids. Applied Thermal Engineering, 130, 363–374. https://doi.org/10.1016/j.applthermaleng.2017.11.027
  • 14. Hussein, A. K., Ashorynejad, H. R., Shikholeslami, M., & Sivasankaran, S. (2014). Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in the presence of a magnetic field. Nu-clear Engineering and Design, 268, 10–17. https://doi.org/10.1016/j.nucengdes.2013.11.072
  • 15. Jouybari, H. J., Saedodin, S., Zamzamian, A., Nimvari, M. E., & Wongwises, S. (2017). Effects of porous material and nano-particles on the thermal performance of a flat plate solar collector: An experimental study. Renewable Energy, 114, 1407–1418. https://doi.org/10.1016/j.renene.2017.07.008
  • 16. Kalogirou, S. (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30, 231–295. https://doi.org/10.1016/j.pecs.2004.02.001
  • 17. Keerthi, M. L., Gireesha, B. J., & Sowmya, G. (2022). Numerical investigation of efficiency of fully wet porous convective-radiative moving radial fin in the presence of shape-dependent hybrid nanofluid. International Communications in Heat and Mass Transfer, 138, 106341. https://doi.org/10.1016/j.icheatmasstransfer.2022.106341
  • 18. Kiliç, F., Menlik, T., & Sözen, A. (2018). Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Solar Energy, 164, 101–108. https://doi.org/10.1016/j.solener.2018.02.002
  • 19. Meibodi, S. S., Kianifar, A., Niazmand, H., Mahian, O., & Wongwises, S. (2015). Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG-water nanofluids. International Communications in Heat and Mass Transfer, 65, 71–75. https://doi.org/10.1016/j.icheatmasstransfer.2015.02.011
  • 20. Michael, J. J., & Iniyan, S., (2015). Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Conversion and Management, 95, 160–169. https://doi.org/10.1016/j.enconman.2015.02.017
  • 21. Moghadam, A. J., Farzane-Gord, M., Sajadi, M., & Hoseyn-Zadeh, M. (2014). Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Experimental Thermal and Fluid Science, 58, 9–14. https://doi.org/10.1016/j.expthermflusci.2014.06.014
  • 22. Mohamad, B., & Zelentsov, A. (2022). Methode hybride pour la conception et l’optimisation d’un echappement silencieux de voitures de course formula. Canadian Acoustics / Acoustique canadienne, 50(4), 5-11.
  • 23. Nasrin, R., & Alim, M. A. (2014). Semi-empirical relation for forced convective analysis through a solar collector. Solar Energy, 105, 455–467. https://doi.org/10.1016/j.solener.2014.03.035
  • 24. Natarajan, E., & Sathish R. (2009). Role of nanofluids in solar water heater. International Journal of Advanced Manufacturing Technology, 43, 6082–6087. https://doi.org/10.1007/s00170-008-1876-8
  • 25. Okonkwo, E. C., Wole-Osho, I., Kavaz, D., Abid, M., & Al-Ansari, T. (2020). Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids. Sustainable Energy Technology and Assessments, 37, 100636. https://doi.org/10.1016/j.seta.2020.100636
  • 26. Qader, F., Hussein, A., Danook, S., Mohamad, B., & Khaleel, O. (2023). Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media and TiO2 Water. CFD Letters, 15(4), 31–42. https://doi.org/10.37934/cfdl.15.4.3142
  • 27. Said, Z., Saidur, R., Sabiha, M. A., Rahim, N. A., & Anisur, M. R. (2015). Thermophysical properties of single wall carbon nanotubes and its effect on exergy efficiency of a flat plate solar collector. Solar Energy, 115, 757–769. https://doi.org/10.1016/j.solener.2015.02.037
  • 28. Sharafeldin M. A., & Gróf, G. (2018). Experimental investigation of flat plate solar collector using CeO2-water nanofluid. Energy Conversion and Management, 155, 32–41. https://doi.org/10.1016/j.enconman.2017.10.070
  • 29. Shojaeizadeh, E., Veysi, F., & Kamandi, A. (2015). Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector. Energy and Buildings, 101, 12–23. https://doi.org/10.1016/j.enbuild.2015.04.048
  • 30. Sundar, L. S. Singh, M. K. Punnaiah, V. Sousa, A. C. M. (2018). Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts. Renewable Energy, 119, 820–833. https://doi.org/10.1016/j.renene.2017.10.056
  • 31. Tong, Y., Lee, H., Kang, W., & Cho, H. (2019). Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Applied Thermal Engineering, 159, 113959. https://doi.org/10.1016/j.applthermaleng.2019.113959
  • 32. Vakili, M., Hosseinalipour, S. M., Delfani, S., Khosrojerdi, S., & Karami, M. (2016). Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. Solar Energy, 131, 119–130. https://doi.org/10.1016/j.solener.2016.02.034
  • 33. Verma, S. K., Tiwari, A. K., & Chauhan, D. S. (2016). Performance augmentation in flat plate solar collector using MgO/water nanofluid. Energy Conversion and Management, 124, 607–617. https://doi.org/10.1016/j.enconman.2016.07.007
  • 34. Verma, S. K., Tiwari, A. K., & Chauhan, D. S. (2017). Experimental evaluation of flat plate solar collector using nanofluids. Energy Conversion and Management, 134, 103–115. https://doi.org/10.1016/j.enconman.2016.12.037
  • 35. Vijayakumaar, S. C. R., Shankar, L., & Babu, K. (2013). Effect of CNT-H2O nanofluid on the performance of solar flat plate collector-an experimental investigation. Proceedings of the International Conference on Advanced Nanomaterials & Emerging Engineering Technologies ICANMEET 2013, India, pp. 197–199. https://doi.org/10.1109/ICANMEET.2013.6609275
  • 36. Yousefi, T., Shojaeizadeh, E., Veysi, F., & Zinadini, S. (2012). An experimental investigation on the effect of pH variation of MWCNT-H 2O nanofluid on the efficiency of a flat-plate solar collector. Solar Energy, 86(2), 771–779. https://doi.org/10.1016/j.solener.2011.12.003
  • 37. Zamzamian, A., KeyanpourRad, M., KianiNeyestani, M., & Jamal-Abad, MAZZ. T. (2014). An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renewable Energy, 71, 658–664. https://doi.org/10.1016/j.renene.2014.06.003
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8aee486a-3d7f-4b9e-af9a-eef33080e32e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.