Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Evaluation of microbially induced carbonate precipitation in repairing process of cement mortars by Raman spectroscopy
Języki publikacji
Abstrakty
Zastosowanie mikroorganizmów stymulujących wytrącanie węglanów, które mogą wypełniać powstające w mikrostrukturze kompozytów cementowych spękania [MICP], zyskuje w ostatnich latach zainteresowanie jako alternatywny sposób samonaprawy tych materiałów. W artykule przeanalizowano efektywność powierzchniowej aplikacji środków naprawczych z zeolitu NaX i bentonitu, spor bakterii Bacillus subtilis oraz roztworów cementujących [prekursorów wytrącania] jako metody naprawy spękanych powierzchni zapraw cementowych. Efekty tej metody oceniono na podstawie analizy obrazu oraz badań mikrostruktury osadów wytrąconych w warunkach kontrolowanych i na powierzchniach zaleczonych kompozytów. Do charakterystyki mikrostruktury wykorzystano spektroskopię ramanowską oraz dyfrakcję rentgenowską XRD. Przeprowadzone badania potwierdziły wytrącanie węglanów w przełomie leczonych rys [maksymalnie 31,9 % zajęcia powierzchni przez wytworzony osad], co świadczy o efektywności zajścia procesu MICP, równocześnie wskazując na udział w mechanizmie wytrącania osadów abiotycznego wytrącania form krystalicznych obecnych w roztworach cementujących. Dodatkowo, potwierdzono efektywność zastosowania spektroskopii ramanowskiej do charakterystyki powierzchni kompozytu cementowego oraz węglanów wytrącanych przez mikroorganizmy.
The use of microorganisms that stimulate the precipitation of carbonates, which can fill the cracks that form in the structure of cementitious composites [MICP], has been gaining interest in recent years as an alternative method of self-healing of these materials. This article analyses the effectiveness of surface application of repair agents composed of zeolite NaX and bentonite, Bacillus subtilis bacteria spores and cementing solutions [precursors of precipitation reactions] as a method of repairing cracked cement mortar surfaces. The effects of this method were evaluated by image analysis and microstructure studies of precipitates precipitated under controlled conditions and on the surfaces of healed composites. Raman spectroscopy and X-ray diffraction were used to characterize the microstructure. The conducted tests confirmed the precipitation of carbonates in the breakthrough of the healed cracks [maximum 31.9% occupation of the surface by the precipitate produced], which proves the effectiveness of the MICP process incident, at the same time indicating the participation in the mechanism of abiotic precipitation of crystalline forms present in the cementing solutions. Additionally, the effectiveness of using Raman spectroscopy to characterise the surface of the cement composite and the carbonates precipitated by microorganisms was confirmed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
301--317
Opis fizyczny
Bibliogr. 53 poz., il., tab.
Twórcy
autor
- Lublin University of Technology, Faculty of Civil Engineering and Architecture, Lublin, Poland
autor
- Warsaw University of Life Sciences - SGGW, Institute of Civil Engineering, Warsaw, Poland
autor
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Lublin, Poland
autor
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Lublin, Poland
autor
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Lublin, Poland
autor
- Lublin University of Technology, Faculty of Civil Engineering and Architecture, Lublin, Poland
Bibliografia
- 1. J. T. DeJong, M. G. Gomez, A. C. San Pablo, C. M. R. Graddy, D. C. Nelson, M. Lee, K. Ziotopoulou, M.E. Kortbawi, B.M. Montoya, T. H. Kwon, State of the Art: MICP soil improvement and its application to liquefaction hazard mitigation, 405-509, Proceedings of the 20th ICSMGE Sydney, Australia, Australian Geomechanics Society, Rahman and Jaksa, 2022.
- 2. M. Fukue, Z. Lechowicz, Y. Fujimori, K. Emori, C.N. Mulligan, Incorporation of Optical Density into the Blending Design for a Biocement Solution. Materials (Basel). 15, 1951 (2022). https://doi.org/10.3390/ma15051951
- 3. J. Fronczyk, Artificial road runoff water treatment by a pilot-scale horizontal permeable treatment zone. Ecol. Eng. 107, 198-207 (2017). https://doi.org/10.1016/j.ecoleng.2017.07.025
- 4. J. Fronczyk, M. Janek, M. Szeląg, A. Pyzik, W. Franus, Immobilization of (bio-)healing agents for self-healing concrete technology: Does it really ensure long-term performance? Compos. Part B Eng. 266, 110997 (2023). https://doi.org/10.1016/j.compositesb.2023.110997
- 5. M.R. de Rooij, E. Schlangen, C. Joseph, Self-Healing Phenomena in Cement-Based, M.R. de Rooij, K.V. Tittelboom, N.D. Belie, E. Schlangen, Springer, 2013. https://doi.org/10.1007/978-94-007-6624-2
- 6. M. Rajczakowska, K. Habermehl-Cwirzen, H. Hedlund, A. Cwirzen, Autogenous Self-Healing: A Better Solution for Concrete. J. Mater. Civ. Eng. 31, 03119001 (2019). https://doi.org/10.1061/(asce)mt.1943-5533.0002764
- 7. J.P. Adolphe, J.F. Loubiere, J. Paradas, F. Soleihavoup, Procédé de iratamente biologique d’une surface artificielle. European Patent 90400G97.0. (after French patent 8903517, 1989) 1990.
- 8. T. Zhu, M. Dittrich, Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Front. Bioeng. Biotechnol. 4 (2016). https://doi.org/10.3389/fbioe.2016.00004
- 9. V. Ramakrishnan, S. Bang, K. Deo, A novel technique for repairing cracks in high performance concrete using bacteria. Proceedings of the International Conference on HPHSC, 597-618, 1998.
- 10. W. De Muynck, D. Debrouwer, N. De Belie, W. Verstraete, Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38, 1005-1014 (2008). https://doi.org/10.1016/j.cemconres.2008.03.005
- 11. H.K. Kim, S.J. Park, J.I. Han, H.K. Lee, Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Constr. Build. Mater. 38, 1073-1082 (2013). https://doi.org/10.1016/j.conbuildmat.2012.07.040
- 12. V. Wiktor, H.M. Jonkers, Field performance of bacteria-based repair system: Pilot study in a parking garage. Case Stud. Constr. Mater. 2, 11-17 (2015). https://doi.org/10.1016/j.cscm.2014.12.004
- 13. J. M. Chalmers, P. R. Griffiths, Handbook of vibrational spectroscopy. Vol. 5, Wiley, New York, 2002.
- 14. T. Mi, Y. Li, W. Liu, W. Li, W. Long, Z. Dong, Q. Gong, F. Xing, Y. Wang, Quantitative evaluation of cement paste carbonation using Raman spectroscopy. Npj Mater. Degrad. 5 (2021). https://doi.org/10.1038/s41529-021-00181-6
- 15. P. McMillan, Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. American Mineralogist, 69, 622-644 (1984).
- 16. N. Gierlinger, M. Schwanninger, The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy, 21, 69-89 (2007). https://doi.org/10.1155/2007/498206
- 17. L. Bandura, R. Panek, J. Madej, W. Franus, Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances. Fuel. 283, 119173 (2021). https://doi.org/10.1016/j.fuel.2020.119173
- 18. M. Janek, J. Fronczyk, A. Pyzik, M. Szeląg, R. Panek, W. Franus, Diatomite and Na-X zeolite as carriers for bacteria in self-healing cementitious mortars. Constr. Build. Mater. 343, 128103 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128103
- 19. Ç.M. Oral, B. Ercan, Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technol. 339, 781-788 (2018). https://doi.org/10.1016/j.powtec.2018.08.066
- 20. V. Wiktor, H.M. Jonkers, Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Compos. 33, 763-770 (2011). https://doi.org/10.1016/j.cemconcomp.2011.03.012
- 21. H.F. Li, Z. Li, Y. Liu, X.Y. Wang, K. Zhang, G.Z. Zhang, Effect of basalt fibers on the mechanical and self-healing properties of expanded perlite solid-loaded microbial mortars. J. Build. Eng. 62, 105201 (2022). https://doi.org/10.1016/j.jobe.2022.105201
- 22. W. Khaliq, M.B. Ehsan, Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater. 102, 349-357 (2016). https://doi.org/10.1016/j.conbuildmat.2015.11.006
- 23. E.N. Kozlov, E.N. Fomina, V.N. Bocharov, M.Y. Sidorov, N.S. Vlasenko, V.V. Shilovskikh, A Raman spectroscopic study of the natural carbonophosphates Na3MCO3PO4 (M is Mn, Fe, and Mg). Eur. J. Mineral. 33, 283-297 (2021). https://doi.org/10.5194/ejm-33-283-2021
- 24. U. Wehrmeister, D. E. Jacob, A. L. Soldati, T. Häger, W. Hofmeister, Vaterite in freshwater cultured pearls from China and Japan. J. Gemmol. 31, 399-416 (2007). https://doi.org/10.15506/JoG.2007.30.7.399
- 25. R.L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, J. Plášil, S.J. Palmer, E.C. Keeffe, I. Němec, Dussertite BaFe3+3(AsO4)2(OH)5 - a Raman spectroscopic study of a hydroxy-arsenate mineral. J. Raman Spectrosc. 42, 56-61 (2011). https://doi.org/10.1002/jrs.2612
- 26. Z. Tomić, P. Makreski, B. Gajić, Identification and spectra-structure determination of soil minerals: Raman study supported by IR spectroscopy and x-ray powder diffraction. J. Raman Spectrosc. 41, 582-586 (2010). https://doi.org/10.1002/jrs.2476
- 27. X. Dong, X. Fang, Y. Wang, X. Song, Raman spectra and optical properties of the chalcogen-hyperdoped silicon: a first-principles study. Opt. Express. 26, 796-805 (2018). https://doi.org/10.1364/oe.26.00a796.
- 28. M. Szurgot, A. Tomasik, Micro-raman spectroscopy of hah 286 eucrite, 1719, 1335, 44th Lunar and Planetary Science Conference, The Woodlands, Texas, 2013.
- 29. N. Buzgar, A. I. Apopei, The raman study of certain carbonates. Geologie. Tomul LV, 2, 97-112 (2009).
- 30. T. Schmid, P. Dariz, Shedding light onto the spectra of lime: Raman and luminescence bands of CaO, Ca(OH)2 and CaCO3. J. Raman Spectrosc. 46, 141-146 (2014). https://doi.org/10.1002/jrs.4622
- 31. M.A. Pimenta, A. Marucci, S.D.M. Brown, M.J. Matthews, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Resonant Raman effect in single-wall carbon nanotubes. J. Mater. Res. 13, 2396-2404 (1998). https://doi.org/10.1017/S0884291400045696
- 32. K. Moazzen, M.J. Zohuriaan-Mehr, R. Jahanmardi, K. Kabiri, Toward poly(furfuryl alcohol) applications diversification: Novel self-healing network and toughening epoxy-novolac resin. J. Appl. Polym. Sci. 135, 45921 (2018). https://doi.org/10.1002/app.45921
- 33. A.E. Williams, N.I. Hammer, R.C. Fortenberry, D.N. Reinemann, Tracking the Amide I and αCOO - Terminal ν(C=O) Raman Bands in a Family of L-Glutamic Acid-Containing Peptide Fragments: A Raman and DFT Study. Molecules. 26, 4790 (2021). https://doi.org/10.3390/molecules26164790
- 34. D. Kumar, U. Rizal, S. Das, B.S. Swain, B.P. Swain, Micro-Raman and FTIR Analysis of Silicon Carbo-Nitride Thin Films at Different H2 Flow Rate, 443, 77-83, Advances in Electronics, Communication and Computing, Lecture Notes in Electrical Engineering, Springer, Singapore, A. Kalam, S. Das, K. Sharma (eds), 2018. https://doi.org/10.1007/978-981-10-4765-7_9
- 35. X. Zhu, X. Guo, J.R. Smyth, Y. Ye, X. Wang, D. Liu, High-Temperature Vibrational Spectra Between Mg (OH)2 and Mg (OD)2: Anharmonic Contribution to Thermodynamics and D/H Fractionation for Brucite. J. Geophys. Res. Solid Earth. 124, 8267-8280 (2019). https://doi.org/10.1029/2019JB017934
- 36. J. Ibáñez, L. Artús, R. Cuscó, Á. López, E. Menéndez, M.C. Andrade, Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy. J. Raman Spectrosc. 38, 61-67 (2007). https://doi.org/10.1002/JRS.1599
- 37. E. Wiercigroch, E. Szafraniec, K. Czamara, M.Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, K. Malek, Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 185, 317-335 (2017). https://doi.org/10.1016/j.saa.2017.05.045
- 38. G. Kalisz, A. Przekora, P. Kazimierczak, B. Gieroba, M. Jedrek, W. Grudzinski, W.I. Gruszecki, G. Ginalska, A. Sroka-Bartnicka, Application of raman spectroscopic imaging to assess the structural changes at cell-scaffold interface. Int. J. Mol. Sci. 22, 1-16 (2021). https://doi.org/10.3390/ijms22020485
- 39. S.E.J. Villar, H.G.M. Edwards, Raman spectroscopy in astrobiology. Anal. Bioanal. Chem. 384, 100-113 (2006). https://doi.org/10.1007/s00216-005-0029-2
- 40. B. Gil, W.J. Roth, W. Makowski, B. Marszalek, D. Majda, Z. Olejniczak, P. Michorczyk, Facile evaluation of the crystallization and quality of the transient layered zeolite MCM-56 by infrared spectroscopy. Catal. Today. 243, 39-45 (2015). https://doi.org/https://doi.org/10.1016/j.cattod.2014.07.031
- 41. M. Sitarz, W. Mozgawa, M. Handke, Vibrational spectra of complex ring silicate anions - method of recognition. J. Mol. Struct. 404, 193-197 (1997). https://doi.org/10.1016/S0022-2860(96)09381-7
- 42. J. Higl, M. Köhler, M. Lindén, Confocal Raman microscopy as a non-destructive tool to study microstructure of hydrating cementitious materials. Cem. Concr. Res. 88, 136-143 (2016). https://doi.org/10.1016/j.cemconres.2016.07.005
- 43. J. Lv, J. Feng, Y. Liu, Z. Wang, M. Zhao, Discriminating Paints with Different Clay Additives in Forensic Analysis of Automotive Coatings by FT-IR and Raman Spectroscopy. Spectrosc. 27, 36-43 (2012).
- 44. M. Ritz, L. Vaculíková, J. Kupková, E. Plevová, L. Bartoňová, Different level of fluorescence in Raman spectra of montmorillonites. Vib. Spectrosc. 84, 7-15 (2016). https://doi.org/10.1016/j.vibspec.2016.02.007
- 45. R. Ševčík, P. Mácová, M. Pérez-Estébanez, Crystallization of Aragonite from Vaterite Precursor during Various Refluxing Times. Adv. Mater. Res. 1119, 466-470 (2015). https://doi.org/10.4028/www.scientific.net/amr.1119.466.
- 46. C. Tang, T.-C. Ling, K.H. Mo, Raman spectroscopy as a tool to understand the mechanism of concrete durability - A review. Constr. Build. Mater. 268, 121079 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121079
- 47. L. Black, C. Breen, J. Yarwood, K. Garbev, P. Stemmermann, B. Gasharova, Structural Features of C-S-H(I) and Its Carbonation in Air - A Raman Spectroscopic Study. Part II: Carbonated Phases. J. Am. Ceram. Soc. 90, 908-917 (2007). https://doi.org/10.1111/J.1551-2916.2006.01429.X
- 48. R. Ševčík, P. Mácová, Localized quantification of anhydrous calcium carbonate polymorphs using micro-Raman spectroscopy. Vib. Spectrosc. 95, 1-6 (2018). https://doi.org/10.1016/j.vibspec.2017.12.005
- 49. S. Martinez-Ramirez, S. Sanchez-Cortes, J. V. Garcia-Ramos, C. Domingo, C. Fortes, M.T. Blanco-Varela, Micro-Raman spectroscopy applied to depth profiles of carbonates formed in lime mortar. Cem. Concr. Res. 33, 2063-2068 (2003). https://doi.org/10.1016/S0008-8846(03)00227-8
- 50. U. Wehrmeister, A.L. Soldati, D.E. Jacob, T. Häger, W. Hofmeister, Raman spectroscopy of synthetic, geological and biological vaterite: A Raman spectroscopic study. J. Raman Spectrosc. 41, 193-201 (2010). https://doi.org/10.1002/jrs.2438
- 51. J. Bensted, Uses of Raman Spectroscopy in Cement Chemistry. J. Am. Ceram. Soc. 59, 140-143 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb09451.x
- 52. C. Liu, D. Wang, H. Zheng, T. Liu, A dehydroxylation kinetics study of brucite Mg(OH)2 at elevated pressure and temperature. Phys. Chem. Miner. 44, 297-306 (2017). https://doi.org/10.1007/s00269-016-0857-y
- 53. A.S. Templeton, E.T. Ellison, Formation and loss of metastable brucite: does Fe(II)-bearing brucite support microbial activity in serpentinizing ecosystems? Phil. Trans. R. Soc. A. 378 (2020). https://doi.org/10.1098/rsta.2018.0423
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8aee0f4e-ff14-4b24-ba06-067fe1ac20d9