PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduced Glass-Transition Temperature versus Glass-Forming Ability in FeCoB-Based Amorphous Alloys

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents studies concerning the relationship between reduction of glass transition temperature Trg and the glass-forming ability of FeCoB-based alloys. On the basis of theoretical considerations, Turnbull [1] determined the reduced glass transition temperature (Tg/Tl) as being 2/3 of the Vogel–Fulcher–Tammann (VFT) temperature; since then, continuous research has been carried out, aiming to calculate the Trg parameter and describe its relationship with glass-forming ability. In the majority of research papers, the reduced glass transition temperature is calculated from the relationship Tg/Tm, proposed by Uhlmann and Davies [2, 3]. On the basis of differential scanning calorimetry (DSC) studies, undertaken in this current work, the values of the following temperatures have been found: Tg, Tx, Tm and Tl, in addition to the temperature ranges: ΔTx, ΔTm and ΔTl. The correlation between: Tg/Tm, Tg/Tl and the glass-forming ability also has been discussed. Finally, for the investigated alloys, it has been found that the relationship proposed by Turnbull is reliable over a wide range of ΔTm.
Twórcy
autor
  • Czestochowa University of Technology, Institute of Physics, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
Bibliografia
  • [1] D. Turnbull, Contemp. Phys. 10, 473 (1969).
  • [2] H. A. Davies, Phys. Chem. Glasses. 17, 159–173 (1976).
  • [3] D. R. Uhlmann, J. Non-Crystal. Solids. 7, 337 (1972).
  • [4] K. Błoch, J. Magn. Magn. Mater. 390, 118–122 (2015).
  • [5] M. Nabiałek, J. Alloys and Compd. 642, 98–103 (2015).
  • [6] A. Lukiewska, J. Zbroszczyk, M. Nabialek, J. Olszewski, J. Swierczek, W. Ciurzynska, K. Sobczyk, M. Dospial, Arch. Metall. Mater. Sci. 53, 881 (2008).
  • [7] K. Gruszka, Mater. Technol. 50 (5), 707-718 (2016).
  • [8] C. C. Lavorato, G. Fiore, P. Tiberto, M. Baricco, H. Sirkin, J. A. Moya, J. Alloys Compd. 536S, S319–S323 (2012).
  • [9] K. Błoch, M. Nabiałek, Acta Phys. Polon. A, 127, 413 (2015).
  • [10] H. Chiriac, N. Lupu, Mater. Sci. Eng. A 375-377, 255–259 (2004).
  • [11] D. Szewieczek, S. Lesz, J. Mater. Process. Tech. 162, 254–259 (2005).
  • [12] M. G. Nabialek, M. Szota, M. J. Dospial, J. Alloys Compd. 526, 68-73 (2012).
  • [13] M. Nabiałek, P. Pietrusiewicz, M. Dośpiał, M. Szota, J. Gondro, K. Gruszka, A. Dobrzańska-Danikiewicz, S. Walters, A. Bukowska, J. Alloys Compd. 615, S56-S60 (2015).
  • [14] H. S. Chen, D. Turnbull, Acta Metallurgica 17, 1021–1031 (1969).
  • [15] Gilman, J. J. Metallic glasses. Science (New York, N.Y.) 208, 856–61 (1980).
  • [16] Z. Shao, J. P. Singer, Y. Liu, Z. Liu, H. Li, M. Gopinadhan, C. S. O’Hern, J. Schroers, Ch. O. Osuji, Physical Rewiew E 91, 020301(R) (2015).
  • [17] H. S. Chen and D. Turnbull, J. Chem. Phys. 48, 12560 (1968).
  • [18] C. A. Angell, Science 267, 1924–1935 (1995).
  • [19] Z. P. Lu, H. Tan, Y. Li, S. C. Ng, Scripta Mater. 42, 667–673 (2000).
  • [20] M. Nabiałek, M. Dośpiał, M. Szota, P. Pietrusiewicz, J. Jędryka, J. Alloys Compd. 509, 3382–3386 (2011).
  • [21] L. Wang, Q. Zhang, X. Cui, F. Zu, J. Non. Cryst. Solids 419, 51–57 (2015).
  • [22] M. Nabiałek, J. Zbroszczyk, W. Ciurzyńska, J. Olszewski, S. Lesz, P. Brągiel, J. Gondro, K. Sobczyk, A. Łukiewska, J. Świerczek, P. Pietrusiewicz, Arch. Metall. Mater 55, 195–203 (2010).
  • [23] K. Q. Qui, H. F. Zhang, A. M. Wang, B. Z. Ding, Z. Q. Hu, Acta Materialia 70, 3567–3578 (2002).
  • [24] R. Li, S. Kumar, S. Ram, M. Stoica, S. Roth, J. Eckert, J. Phys. Appl. Phys. 42, 085006 (2009).
  • [25] W. M. Wang, A. Gebert, S. Roth, U. Kuehn, L. Schultz, J. Alloys Compd. 459, 203–208 (2008).
  • [26] A. Makino, T. Kubota, Ch. Chang, M. Makabe, A. Inoue, J. Magn. Magn. Mater. 320, 2499–2503 (2008).
  • [27] X. D. Wang, J. Z. Jiang, S. Yi, J. Non-Cryst. Solids 353, 4157–4161 (2007).
  • [28] T. Kozieł, J. Latuch, A. Zielińska-Lipiec, Arch. Metall. Mater. 58, 601–605 (2013).
  • [29] S. F. Guo, Z. Y. Wu, L. Liu, J. Alloys and Compd. 468, 54-57 (2009).
  • [30] L. C. Zhang, J. Xu, Journal of Non - Crystalline Solids 347, 166–172 (2004).
  • [31] B. Yao, Y. Zhang, L. Si, H. Tan, Y. Li, Journal of Physics Condensed Matter 16, 6325–6334 (2004).
  • [32] B. A. Sun, M. X. Pan, D. Q. Zhao, W. H. Wang, X. K. Xi, M. T. Sandor, Y. Wu, Scriota Materialia 59, 1159–1162 (2008).
  • [33] S. Roth, W. Loeser, J. Mater. Sci. Lett. 5,1033 – 1035 (1986).
  • [34] A. Inoue, Acta. Mater. 48, 279-306 (2000).
  • [35] A. Inoue, Mater. Trans. Japan. Inst. Metals 36, 866 (1995).
  • [36] C. Thompson, A. L. Greer, F. Spaepen, Acta Metall. 31, 1883 (1983).
  • [37] Z. P Lu, H. Tan, Y. Li, S. C Ng, J. Non-Cryst. Solids 270, 103 (2000).
  • [38] Y. Li, S. C. Ng, C. K Ong, H. H Hng, T. T. Goh, Scripta Mater. 36, 783 (1997).
  • [39] Y. He, CE Price, S. J. Poon, Philos. Mag. Lett. 70, 371 (1994).
  • [40] K. Biswas, S. Venkataraman, W. Y. Zhang, S. Ram, J. Eckert, J. Appl. Phys. 100, 023501 (2006).
  • [41] S. Lesz, R. Babilas, R. Nowosielski, Diff. and Def. Data Pt. B: Solid St. Phenom. 203-204, 296–301 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8aeb82d5-45c5-4c97-88ec-24285e23cb76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.